学习3D《2、三维坐标系下的平移旋转缩放》

本文介绍了三维坐标系下平移、旋转和缩放的原理及矩阵表示,通过实例详细讲解了如何进行坐标转换,包括绕x、y、z轴的旋转和各轴的缩放。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有了前面笛卡尔冲的锋陷阵,我们的万丈高楼也将平地起。
话说二维坐标下的平移、旋转、缩放已铭记于心,那么我们就把它推而广之。
首先还是从三维的平移说起:
平移:
假设M是原点为(0,0,0)的坐标系,N是原点为(2,2,2)的坐标系,点P(px,py,pz)是M中的一点,那么点P在N中的坐标P‘是多少呢?
p'x = px - 2;p'y = py - 2;p'z = pz - 2;换成矩阵看看:

p'x = |px| + |-2|
p'y = |py| + |-2|
p'z = |pz| + |-2|

换成齐次坐标就为:

|p'x|   | 1 0 0 tx|   |px|
|p'y| = | 0 1 0 ty| * |py|
|p'z|   | 0 0 1 tz|   |pz|
| 1 |   | 0 0 0  1|   |1 |

对上面来讲:tx=-2,ty=-2;tz=-2;

旋转:
假设M是原点为(0,0,0)的坐标系,点p(px,py,pz)绕z轴逆时针旋转a度到点p',那么点p'是多少呢?
p'x = px*cosa - py*sina
p'y = px*sina + py*cosa
p'z = z
换成齐次坐标就为:


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值