java- 分布式- 一致性哈希算法(1)

原创 2016年05月30日 21:51:20

一致性哈希算法是分布式系统中常用的算法。比如,一个分布式的存储系统,要将数据存储到具体的节点上,如果采用普通的hash方法,将数据映射到具体的节点上,如key%N,key是数据的key,N是机器节点数,如果有一个机器加入或退出这个集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。

    因此,引入了一致性哈希算法:


把数据用hash函数(如MD5),映射到一个很大的空间里,如图所示。数据的存储时,先得到一个hash值,对应到这个环中的每个位置,如k1对应到了图中所示的位置,然后沿顺时针找到一个机器节点B,将k1存储到B这个节点中。

如果B节点宕机了,则B上的数据就会落到C节点上,如下图所示:


这样,只会影响C节点,对其他的节点A,D的数据不会造成影响。然而,这又会造成一个“雪崩”的情况,即C节点由于承担了B节点的数据,所以C节点的负载会变高,C节点很容易也宕机,这样依次下去,这样造成整个集群都挂了。

       为此,引入了“虚拟节点”的概念:即把想象在这个环上有很多“虚拟节点”,数据的存储是沿着环的顺时针方向找一个虚拟节点,每个虚拟节点都会关联到一个真实节点,如下图所使用:


图中的A1、A2、B1、B2、C1、C2、D1、D2都是虚拟节点,机器A负载存储A1、A2的数据,机器B负载存储B1、B2的数据,机器C负载存储C1、C2的数据。由于这些虚拟节点数量很多,均匀分布,因此不会造成“雪崩”现象。

Java实现:

[java] view plain copy
  1. public class Shard<S> { // S类封装了机器节点的信息 ,如name、password、ip、port等  
  2.   
  3.     private TreeMap<Long, S> nodes; // 虚拟节点  
  4.     private List<S> shards; // 真实机器节点  
  5.     private final int NODE_NUM = 100// 每个机器节点关联的虚拟节点个数  
  6.   
  7.     public Shard(List<S> shards) {  
  8.         super();  
  9.         this.shards = shards;  
  10.         init();  
  11.     }  
  12.   
  13.     private void init() { // 初始化一致性hash环  
  14.         nodes = new TreeMap<Long, S>();  
  15.         for (int i = 0; i != shards.size(); ++i) { // 每个真实机器节点都需要关联虚拟节点  
  16.             final S shardInfo = shards.get(i);  
  17.   
  18.             for (int n = 0; n < NODE_NUM; n++)  
  19.                 // 一个真实机器节点关联NODE_NUM个虚拟节点  
  20.                 nodes.put(hash("SHARD-" + i + "-NODE-" + n), shardInfo);  
  21.   
  22.         }  
  23.     }  
  24.   
  25.     public S getShardInfo(String key) {  
  26.         SortedMap<Long, S> tail = nodes.tailMap(hash(key)); // 沿环的顺时针找到一个虚拟节点  
  27.         if (tail.size() == 0) {  
  28.             return nodes.get(nodes.firstKey());  
  29.         }  
  30.         return tail.get(tail.firstKey()); // 返回该虚拟节点对应的真实机器节点的信息  
  31.     }  
  32.   
  33.     /** 
  34.      *  MurMurHash算法,是非加密HASH算法,性能很高, 
  35.      *  比传统的CRC32,MD5,SHA-1(这两个算法都是加密HASH算法,复杂度本身就很高,带来的性能上的损害也不可避免) 
  36.      *  等HASH算法要快很多,而且据说这个算法的碰撞率很低. 
  37.      *  http://murmurhash.googlepages.com/ 
  38.      */  
  39.     private Long hash(String key) {  
  40.           
  41.         ByteBuffer buf = ByteBuffer.wrap(key.getBytes());  
  42.         int seed = 0x1234ABCD;  
  43.           
  44.         ByteOrder byteOrder = buf.order();  
  45.         buf.order(ByteOrder.LITTLE_ENDIAN);  
  46.   
  47.         long m = 0xc6a4a7935bd1e995L;  
  48.         int r = 47;  
  49.   
  50.         long h = seed ^ (buf.remaining() * m);  
  51.   
  52.         long k;  
  53.         while (buf.remaining() >= 8) {  
  54.             k = buf.getLong();  
  55.   
  56.             k *= m;  
  57.             k ^= k >>> r;  
  58.             k *= m;  
  59.   
  60.             h ^= k;  
  61.             h *= m;  
  62.         }  
  63.   
  64.         if (buf.remaining() > 0) {  
  65.             ByteBuffer finish = ByteBuffer.allocate(8).order(  
  66.                     ByteOrder.LITTLE_ENDIAN);  
  67.             // for big-endian version, do this first:  
  68.             // finish.position(8-buf.remaining());  
  69.             finish.put(buf).rewind();  
  70.             h ^= finish.getLong();  
  71.             h *= m;  
  72.         }  
  73.   
  74.         h ^= h >>> r;  
  75.         h *= m;  
  76.         h ^= h >>> r;  
  77.   
  78.         buf.order(byteOrder);  
  79.         return h;  
  80.     }                                                                                                               
  81. }  
版权声明:本文为博主原创文章,未经博主允许不得转载。

分布式存储和一致性哈希

1、什么是一致性哈希 在动态变化的cache环境中,哈希算法应满足4个适应条件: 均衡性:哈希的结果能够尽可能分布到所有的缓存中去 单调性:当缓冲区大小变化时一致性哈希尽量保护已分配的内容不会被...
  • xiaqunfeng123
  • xiaqunfeng123
  • 2016年06月14日 07:52
  • 994

分布式系统中的算法设计(一) -- 一致性 Hash

Hash 大家都知道,把某个要存储的内容的索引 key 通过某个规则计算一下,算出来一个值,这个值往往范围比原来小,且概率意义上不会冲突。 由于 Hash 计算复杂度往往比查找要快,被大量应用到各种...
  • yeasy
  • yeasy
  • 2016年02月25日 11:05
  • 1096

分布式一致性Hash算法实现java版

使用Redis作为缓存服务器的,刚开始的时候会满足需要,随着项目的增大缓存数据的增多就会查询和插入更慢这时就要考虑Redis集群方案了 使用Redis分布式要保证数据都能能够平均的缓存到每一台机器,首...
  • baiyunpeng42
  • baiyunpeng42
  • 2015年04月28日 18:49
  • 2253

memcache 的内存管理介绍和 php实现memcache一致性哈希分布式算法

1 网络IO模型        安装memcached需要先安装libevent   Memcached是多线程,非阻塞IO复用的网络模型,分为监听主线程和worker子线程,监听线程监听网络连接,接...
  • lashou_tech
  • lashou_tech
  • 2016年07月23日 15:26
  • 1709

分布式哈希表DHT和一致性哈希

分布式哈希(DHT) 两个key point:每个节点只维护一部分路由;每个节点只存储一部分数据。从而实现整个网络中的寻址和存储。 DHT只是一个概念,提出了这样一种网络模型。并且说明它是对分布式存储...
  • jazywoo123
  • jazywoo123
  • 2015年12月17日 17:00
  • 1958

P2P系统,一致性哈希和DHT

数据网格产品经常会使用P2P进行通信,借此机会系统地学习一下P2P网络和其资源搜索策略。1 P2P网络架构谈到P2P就涉及到一个概念:Overlay Network(覆盖网络)。所谓覆盖网络是应用层网...
  • dc_726
  • dc_726
  • 2015年01月11日 17:24
  • 6169

一致性哈希算法与C++实现

一. 算法解决问题 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了...
  • okiwilldoit
  • okiwilldoit
  • 2016年05月09日 14:16
  • 2527

linux c/c++ 后台开发常用算法之:一致性哈希算法

一致性哈希主要应用在大规模高可用性的分布式存储上,尤其是KV存储上面,比如memcaced, redis 集群,相比普通hash % N 的优点在于,但动听增加或者删除节点的时候,数据的迁移会比较小,...
  • coder_yi_liu
  • coder_yi_liu
  • 2015年11月05日 23:16
  • 1509

三分钟看懂一致性哈希算法

受一篇“五分钟看懂”的启发,来个哗众取宠的标题 一致性哈希算法,作为分布式计算的数据分配参考,比传统的取模,划段都好很多。 在电信计费中,可以作为多台消息接口机和在线计费主机的分配算法,根据ses...
  • gerryke
  • gerryke
  • 2016年12月30日 09:25
  • 3916

一致性哈希算法的两种优化方案

简介上一篇博客我简单的介绍了一致性哈希算法的基本思想。但是一致性哈希算法的提出当然也同样伴随着新的问题出现,那就是当某一个服务器结点挂掉之后,它的任务就会分配到它的下一个服务器结点,那么这就有悖于分布...
  • MBuger
  • MBuger
  • 2017年07月27日 16:12
  • 288
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:java- 分布式- 一致性哈希算法(1)
举报原因:
原因补充:

(最多只允许输入30个字)