关闭

2016"百度之星" - 初赛(Astar Round2B)解题报告

286人阅读 评论(0) 收藏 举报
分类:

此文章可以使用目录功能哟↑(点击上方[+])

被自己蠢哭,去年还能进一下复赛,今年复赛都没戏了...哭

链接→2016"百度之星" - 初赛(Astar Round2B)

 Problem 1001 区间的价值

Accept: 0    Submit: 0
Time Limit: 10000/5000 mSec(Java/Others)    Memory Limit : 65536 KB

 Problem Description


 Input


 Output

 Sample Input

5
1 6 2 4 4

 Sample Output

36
16
12
12
6

 Problem Idea

解题思路:首先,我们可以用RMQ(理论上来说线段树也是可以的,查询O(logn),n次正好为O(nlogn),而ST算法预处理O(nlogn),查询O(1))预处理O(nlogn)出区间最大值,然后枚举区间的最小值点
为了枚举最小值点,我们需要知道每一个点作为最小值点左右可以延伸的最大范围l[i],r[i],求这两个数组可以用dp来做
预处理完之后,枚举最小值点,更新长度为r[i]-l[i]+1的区间的答案
枚举完之后,我们得到了一组值,但这并不是最后的答案
这是因为我们发现假如有一个最优区间,我们一定可以正好处理到或者处理到比这个区间
的区间,也就是说我们求的区间最大的值具有向下的包含性
举例来说,假如当前处理的区间为l[i],r[i],得到了答案ans,那么任何长度小于等于r[l]-l[I]+1的区间的答案都至少为ans
所以我们再用线性的时间递推求出答案即可

题目链接→HDU 5696 区间的价值

 Source Code

  1. /*Sherlock and Watson and Adler*/  
  2. #pragma comment(linker, "/STACK:1024000000,1024000000")  
  3. #include<stdio.h>  
  4. #include<string.h>  
  5. #include<stdlib.h>  
  6. #include<queue>  
  7. #include<stack>  
  8. #include<math.h>  
  9. #include<vector>  
  10. #include<map>  
  11. #include<set>  
  12. #include<cmath>  
  13. #include<complex>  
  14. #include<string>  
  15. #include<algorithm>  
  16. #include<iostream>  
  17. #define exp 1e-10  
  18. using namespace std;  
  19. const int N = 100005;  
  20. const int M = 40;  
  21. const int inf = 100000000;  
  22. const int mod = 2009;  
  23. int s[N],n,maxnum[N][20],l[N],r[N];  
  24. __int64 ans[N];  
  25. void RMQ()          //预处理  O(nlogn)  
  26. {  
  27.     int i,j;  
  28.     int m=(int)(log(n*1.0)/log(2.0));  
  29.     for(i=1;i<=n;i++)  
  30.         maxnum[i][0]=s[i];  
  31.     for(j=1;j<=m;j++)  
  32.         for(i=1;i+(1<<j)-1<=n;i++)  
  33.             maxnum[i][j]=max(maxnum[i][j-1],maxnum[i+(1<<(j-1))][j-1]);  
  34. }  
  35. int Ask_MAX (int a,int b)   //O(1)  
  36. {  
  37.     int k=int(log(b-a+1.0)/log(2.0));  
  38.     return max(maxnum[a][k],maxnum[b-(1<<k)+1][k]);  
  39. }  
  40. int main()  
  41. {  
  42.     int i,k;  
  43.     while(~scanf("%d",&n))  
  44.     {  
  45.         memset(ans,0,sizeof(ans));  
  46.         for(i=1;i<=n;i++)  
  47.         {  
  48.             scanf("%d",&s[i]);  
  49.             l[i]=r[i]=i;  
  50.         }  
  51.         RMQ();  
  52.         for(i=2;i<=n;i++)  
  53.         {  
  54.             k=i-1;  
  55.             while(s[i]<=s[k])  
  56.                 k=l[k]-1;  
  57.             l[i]=k+1;  
  58.         }  
  59.         for(i=n-1;i>0;i--)  
  60.         {  
  61.             k=i+1;  
  62.             while(s[i]<=s[k])  
  63.                 k=r[k]+1;  
  64.             r[i]=k-1;  
  65.         }  
  66.         for(i=1;i<=n;i++)  
  67.             ans[r[i]-l[i]+1]=max(ans[r[i]-l[i]+1],(__int64)Ask_MAX(l[i],r[i])*s[i]);  
  68.         for(i=n-1;i>0;i--)  
  69.             ans[i]=max(ans[i+1],ans[i]);  
  70.         for(i=1;i<=n;i++)  
  71.             printf("%I64d\n",ans[i]);  
  72.     }  
  73.     return 0;  
  74. }  

 Problem 1003 瞬间移动

Accept: 0    Submit: 0
Time Limit: 4000/2000 mSec(Java/Others)    Memory Limit : 65536 KB

 Problem Description

有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次你都可以选择一个右下方格子,并瞬移过去(如从下图中的红色格子能直接瞬移到蓝色格子),求到第n行第m列的格子有几种方案,答案对1000000007取模。


 Input

多组测试数据。

两个整数n,m(2≤n,m≤100000)

 Output

一个整数表示答案

 Sample Input

4 5

 Sample Output

10

 Problem Idea

解题思路:除去起点(1,1)和终点(n,m)已经固定,中间能经过的是一个(n-2)*(m-2)的矩阵

然后我们可以在这个矩阵里取0个(就是直接从起点跳到终点)、1个、2个……min(n,m)-2个间接点

而对于取i个间接点,其实就是确定这i个间接点行数与列数有多少种取法


于是,我们得到了组合数公式(假设n<m,此题n,m和m,n结果是一样的,过我们可以交换n,m实现n<m)


组合数的求解我们可以交给Lucas定理,但是这个公式,我们还需要化简,不然计算100000项的组合数还是会超时

为了让式子看起来更简洁,对于输入的n与m,我们预处理-2,即n-=2,m-=2,这样上述式子就变成了


化简


剩下的就是套Lucas模板了,嫌时间长的还可以进行阶乘预处理

题目链接→HDU 5698 瞬间移动

 Source Code

  1. /*Sherlock and Watson and Adler*/  
  2. #pragma comment(linker, "/STACK:1024000000,1024000000")  
  3. #include<stdio.h>  
  4. #include<string.h>  
  5. #include<stdlib.h>  
  6. #include<queue>  
  7. #include<stack>  
  8. #include<math.h>  
  9. #include<vector>  
  10. #include<map>  
  11. #include<set>  
  12. #include<cmath>  
  13. #include<complex>  
  14. #include<string>  
  15. #include<algorithm>  
  16. #include<iostream>  
  17. #define exp 1e-10  
  18. using namespace std;  
  19. const int N = 100005;  
  20. const int M = 100;  
  21. const int inf = 1600000000;  
  22. const int p = 1000000007;  
  23. typedef long long LL;  
  24.   
  25. LL quick_mod(LL a, LL b)  
  26. {  
  27.     LL ans = 1;  
  28.     a %= p;  
  29.     while(b)  
  30.     {  
  31.         if(b & 1)  
  32.         {  
  33.             ans = ans * a % p;  
  34.             b--;  
  35.         }  
  36.         b >>= 1;  
  37.         a = a * a % p;  
  38.     }  
  39.     return ans;  
  40. }  
  41.   
  42. LL C(LL n, LL m)  
  43. {  
  44.     if(m > n) return 0;  
  45.     LL ans = 1;  
  46.     for(int i=1; i<=m; i++)  
  47.     {  
  48.         LL a = (n + i - m) % p;  
  49.         LL b = i % p;  
  50.         ans = ans * (a * quick_mod(b, p-2) % p) % p;  
  51.     }  
  52.     return ans;  
  53. }  
  54.   
  55. LL Lucas(LL n, LL m)  
  56. {  
  57.     if(m == 0) return 1;  
  58.     return C(n % p, m % p) * Lucas(n / p, m / p) % p;  
  59. }  
  60.   
  61. int main()  
  62. {  
  63.     __int64 n,m;  
  64.     int i;  
  65.     while(~scanf("%I64d%I64d",&n,&m))  
  66.     {  
  67.         n-=2,m-=2;  
  68.         if(n>m)  
  69.             swap(n,m);  
  70.         printf("%I64d\n",Lucas(m+n,n));  
  71.     }  
  72.     return 0;  
  73. }  

  1. /*Sherlock and Watson and Adler*/  
  2. #pragma comment(linker, "/STACK:1024000000,1024000000")  
  3. #include<stdio.h>  
  4. #include<string.h>  
  5. #include<stdlib.h>  
  6. #include<queue>  
  7. #include<stack>  
  8. #include<math.h>  
  9. #include<vector>  
  10. #include<map>  
  11. #include<set>  
  12. #include<cmath>  
  13. #include<complex>  
  14. #include<string>  
  15. #include<algorithm>  
  16. #include<iostream>  
  17. #define exp 1e-10  
  18. using namespace std;  
  19. const int N = 200005;  
  20. const int M = 40;  
  21. const int inf = 100000000;  
  22. const int mod = 1000000007;  
  23. __int64 fac[N];  
  24. void init()//阶乘预处理  
  25. {  
  26.     fac[0]=1;  
  27.     for(int i=1;i<=N;i++)  
  28.         fac[i]=i*fac[i-1]%mod;  
  29. }  
  30. __int64 pow_mod(__int64 a,__int64 b)  
  31. {  
  32.     __int64 s=1;  
  33.     a=a%mod;  
  34.     while(b)  
  35.     {  
  36.         if(b&1)  
  37.             s=s*a%mod;  
  38.         a=a*a%mod;  
  39.         b>>=1;  
  40.     }  
  41.     return s;  
  42. }  
  43. __int64 C(int n,int m)  
  44. {  
  45.     if(n==0||m==0)  
  46.         return 1;  
  47.     return  fac[n]*pow_mod(fac[m]*fac[n-m]%mod,mod-2)%mod;  
  48. }  
  49. int main()  
  50. {  
  51.     int n,m;  
  52.     init();  
  53.     while(~scanf("%d%d",&n,&m))  
  54.     {  
  55.         n-=2;m-=2;  
  56.         printf("%I64d\n",C(m+n,min(n,m))%mod);  
  57.     }  
  58.     return 0;  
  59. }  

 Problem 1005 区间交

Accept: 0    Submit: 0
Time Limit: 8000/4000 mSec(Java/Others)    Memory Limit : 65536 KB

 Problem Description


 Input


 Output

一行表示答案

 Sample Input

5 2 3
1 2 3 4 6
4 5
2 5
1 4

 Sample Output

10

 Problem Idea

解题思路:此题的做法有很多种,不过有种利用STL来解的做法,我觉得挺巧妙的

首先利用vector将区间分组,将所有具有公共左端点的区间划分成一组,比如[3,7],[3,11],[3,4]等,这些都是一组的

接下来就是利用multiset来进行模拟了(顺带提一句,这里不能用set,而用multiset,是因为set无法存储重复相同的数)

对于当前所在位置i,将所有以i作为左端点的区间右端点值插入multiset(multiset内的数默认从小到大排列)中

若multiset的大小超过了k,那我就删除multiset内最小的值直到小于等于k(之所以删除最小的值,是因为在左端点固定的情况下,右端点越小,会使得区间交的位置数越少)

当且仅当multiset大小恰好等于k,且multiset中当前最小的右端点值≥i时,我们找到了一种符合题目要求的区间取法,于是我们更新答案

当然,在开始的时候,我们需要预处理前n项和sum[n]

题目链接→HDU 5700 区间交

 Source Code

  1. /*Sherlock and Watson and Adler*/  
  2. #pragma comment(linker, "/STACK:1024000000,1024000000")  
  3. #include<stdio.h>  
  4. #include<string.h>  
  5. #include<stdlib.h>  
  6. #include<queue>  
  7. #include<stack>  
  8. #include<math.h>  
  9. #include<vector>  
  10. #include<map>  
  11. #include<set>  
  12. #include<cmath>  
  13. #include<complex>  
  14. #include<string>  
  15. #include<algorithm>  
  16. #include<iostream>  
  17. #define exp 1e-10  
  18. #define bitnum(a) __builtin_popcount(a)  
  19. using namespace std;  
  20. const int N = 100005;  
  21. const int M = 10;  
  22. const int inf = 1600000000;  
  23. const int mod = 2009;  
  24. __int64 sum[N],ans;  
  25. multiset<int> s;  
  26. vector<int> v[N];  
  27. int main()  
  28. {  
  29.     int n,k,m,i,j,l,r;  
  30.     while(~scanf("%d%d%d",&n,&k,&m))  
  31.     {  
  32.         s.clear();ans=0;  
  33.         for(i=1;i<=n;i++)  
  34.         {  
  35.             scanf("%I64d",&sum[i]);  
  36.             sum[i]+=sum[i-1];  
  37.             v[i].clear();  
  38.         }  
  39.         for(i=0;i<m;i++)  
  40.         {  
  41.             scanf("%d%d",&l,&r);  
  42.             v[l].push_back(r);  
  43.         }  
  44.         for(i=1;i<=n;i++)  
  45.         {  
  46.             for(j=0;j<v[i].size();j++)  
  47.                 s.insert(v[i][j]);  
  48.             while(s.size()>k)  
  49.                 s.erase(s.begin());  
  50.             if(s.size()==k&&*s.begin()>=i)  
  51.                 ans=max(ans,sum[*s.begin()]-sum[i-1]);  
  52.         }  
  53.         printf("%I64d\n",ans);  
  54.     }  
  55.     return 0;  
  56. }  

 Problem 1006 中位数计数

Accept: 0    Submit: 0
Time Limit: 12000/6000 mSec(Java/Others)    Memory Limit : 65536 KB

 Problem Description

中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数。

现在有n个数,每个数都是独一无二的,求出每个数在多少个包含其的区间中是中位数。

 Input

多组测试数据

第一行一个数n(n≤8000)

第二行n个数,0≤每个数≤

 Output

N个数,依次表示第i个数在多少包含其的区间中是中位数。

 Sample Input

5
1 2 3 4 5

 Sample Output

1 2 3 2 1

 Problem Idea

解题思路:很显然,此题O(n^2logn)的暴力做法必然会TLE,所以我们要想办法做到O(n^2)的复杂度

首先对于第i个数,我们从i-1个数开始递减,分别与第i个数进行比较,假设比第i个数大的数的个数即为l,比第i个数小的数的个数即为r,dp[l-r=k]则为[比第i个数的数的个数][比第i个数的数的个数]多k个的区间个数,那要保证第i个数是区间内的中位数,我只需要在第i个数的右边找有多少个[比第i个数的数的个数][比第i个数的数的个数]多k个的区间,这样两个区间连接起来,正好[比第i个数的数的个数][比第i个数的数的个数]一样多,这样,第i个数就是此区间内的中位数

另外,因为数组下标必须为非负整数,故把数组的中心点移至8000,即dp[8000+k],这样就保证了下标一定是符合要求的

题目链接→HDU 5701 中位数计数

 Source Code

  1. /*Sherlock and Watson and Adler*/  
  2. #pragma comment(linker, "/STACK:1024000000,1024000000")  
  3. #include<stdio.h>  
  4. #include<string.h>  
  5. #include<stdlib.h>  
  6. #include<queue>  
  7. #include<stack>  
  8. #include<math.h>  
  9. #include<vector>  
  10. #include<map>  
  11. #include<set>  
  12. #include<cmath>  
  13. #include<complex>  
  14. #include<string>  
  15. #include<algorithm>  
  16. #include<iostream>  
  17. #define exp 1e-10  
  18. using namespace std;  
  19. const int N = 8005;  
  20. const int M = 8000;  
  21. const int inf = 100000000;  
  22. const int mod = 1000000007;  
  23. int s[N],dp[2*N];  
  24. int main()  
  25. {  
  26.     int n,i,j,k,ans;  
  27.     while(~scanf("%d",&n))  
  28.     {  
  29.         for(i=0;i<n;i++)  
  30.             scanf("%d",&s[i]);  
  31.         for(i=0;i<n;i++)  
  32.         {  
  33.             memset(dp,0,sizeof(dp));  
  34.             dp[M]=1;  
  35.             for(k=0,j=i-1;j>=0;j--)  
  36.             {  
  37.                 if(s[j]>s[i])  
  38.                     k++;  
  39.                 else  
  40.                     k--;  
  41.                 dp[M+k]++;  
  42.             }  
  43.             for(ans=dp[M],k=0,j=i+1;j<n;j++)  
  44.             {  
  45.                 if(s[j]>s[i])  
  46.                     k++;  
  47.                 else  
  48.                     k--;  
  49.                 ans+=dp[M-k];  
  50.             }  
  51.             printf("%d%c",ans,i!=n-1?' ':'\n');  
  52.         }  
  53.     }  
  54.     return 0;  
  55. }  

菜鸟成长记
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:360207次
    • 积分:6007
    • 等级:
    • 排名:第4175名
    • 原创:233篇
    • 转载:163篇
    • 译文:3篇
    • 评论:67条
    Github
    https://github.com/jinhang
    博客专栏
    最新评论