canny算子代码

转载 2007年04月11日 10:27:00

 


VC编程实现数字图像的边缘检测

数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基础,图像理解和分析的第一步往往就是边缘检测,目前它以成为机器视觉研究领域最活跃的课题之一,在工程应用中占有十分重要的地位。本文向读者简单介绍一下这个技术,并给出了在Visual C++环境下实现的代码。

  所谓边缘就是指图像局部亮度变化最显著的部分,它是检测图像局部变化显著变化的最基本的运算。对于数字图像,图像灰度灰度值的显著变化可以用梯度来表示,以边缘检测Sobel算子为例来讲述数字图像处理中边缘检测的实现:

  对于数字图像,可以用一阶差分代替一阶微分;

  △xf(x,y)=f(x,y)-f(x-1,y);

  △yf(x,y)=f(x,y)-f(x,y-1)

  求梯度时对于平方和运算及开方运算,可以用两个分量的绝对值之和表示,即:

  G[f(x,y)]={[△xf(x,y)] +[△yf(x,y)] } |△xf(x,y)|+|△yf(x,y)|;

  Sobel梯度算子是先做成加权平均,再微分,然后求梯度,即:

  △xf(x,y)= f(x-1,y+1) + 2f(x,y+1) + f(x+1,y+1)- f(x-1,y-1) - 2f(x,y-1) - f(x+1,y-1);

  △yf(x,y)= f(x-1,y-1) + 2f(x-1,y) + f(x-1,y+1)- f(x+1,y-1) - 2f(x+1,y) - f(x+1,y+1);

  G[f(x,y)]=|△xf(x,y)|+|△yf(x,y)|;

  上述各式中的像素之间的关系见图

f(x-1,y-1) f(x,y-1) f(x+1,y-1)
f(x-1,y) f(x,y) f(x+1,y)
f(x-1,y+1) f(x,y+1) f(x+1,y+1)

 

我在视图类中定义了响应菜单命令的边缘检测Sobel算子实现灰度图像边缘检测的函数:

void CDibView::OnMENUSobel()
//灰度图像数据的获得参见天极网9.10日发表的拙作//VC数字图像处理一文
{
 HANDLE data1handle;
 LPBITMAPINFOHEADER lpBi;
 CDibDoc *pDoc=GetDocument();
 HDIB hdib;
 unsigned char *hData;
 unsigned char *data;

 hdib=pDoc->m_hDIB;
 BeginWaitCursor();
 lpBi=(LPBITMAPINFOHEADER)GlobalLock((HGLOBAL)hdib);
 hData= lpbi +* (LPDWORD)lpbi + 256*sizeof(RGBQUAD);
 //得到指向位图像素值的指针
 pDoc->SetModifiedFlag(TRUE);//设修改标志为"TRUE"
 data1handle=GlobalAlloc(GMEM_SHARE,WIDTHBYTES(lpBi->biWidth*8)*lpBi->biHeight);
 //申请存放处理后的像素值的缓冲区
 data=(unsigned char*)GlobalLock((HGLOBAL)data1handle);
 AfxGetApp()->BeginWaitCursor();
 int i,j,buf,buf1,buf2;
 for( j=0; jbiHeight; j++)//以下循环求(x,y)位置的灰度值
  for( i=0; ibiWidth; i++)
  {
   if(((i-1)>=0)&&((i+1)biWidth)&&((j-1)>=0)&&((j+1)biHeight))
   {//对于图像四周边界处的向素点不处理
    buf1=(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
       +2*(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j))
       +(int)(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1));
    buf1=buf1-(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
       -2*(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j))
       -(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1));
    //x方向加权微分
    buf2=(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1))
       +2*(int)(int)*(hData+(i)*WIDTHBYTES(lpBi->biWidth*8)+(j+1))
       +(int)(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j+1));
    buf2=buf2-(int)(int)*(hData+(i-1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
       -2*(int)(int)*(hData+(i)*WIDTHBYTES(lpBi->biWidth*8)+(j-1))
       -(int)(int)*(hData+(i+1)*WIDTHBYTES(lpBi->biWidth*8)+(j-1));
    //y方向加权微分
    buf=abs(buf1)+abs(buf2);//求梯度
    if(buf>255) buf=255;
     if(buf<0){buf=0;
       *(data+i*WIDTHBYTES(lpBi->biWidth*8)+j)=(BYTE)buf;
     }

    else *(data+i*lpBi->biWidth+j)=(BYTE)0;
    }
    for( j=0; jbiHeight; j++)
     for( i=0; ibiWidth; i++)
      *(hData+i*WIDTHBYTES(lpBi->biWidth*8)+j)=*(data+i*WIDTHBYTES(lpBi->biWidth*8)+j);
      //处理后的数据写回原缓冲区
      AfxGetApp()->EndWaitCursor();
      GlobalUnlock((HGLOBAL)hdib);
      GlobalUnlock(data1handle);
      GlobalFree(date1handle);
      EndWaitCursor();
      Invalidate(TRUE);
 }

上述的数学分析读者可能看起来有些吃力,不过不要紧,对与边缘检测,大家只要知道有若干个检测模板(既边缘检测矩阵)可以直接实现检测功能就行了,现在将常用的检测实现公式列出如下:

  Roberts算子:G[i,i]=|f[i,j]-f[i+1,j+1]|+|f[i+1,j]-f[i,j+1]|;

  Sobe算子:G[i,i]=|f[i-1,j+1]+2f[i,j+1]+f[i+1,j+1]-f[i-1,j-1]-2f[i,j-1]-f[i+1,j-1]|
           +|f[i-1,j-1]+2f[i-1,j]+f[i-1,j+1]-f[i+1,j-1]-2f[i+1,j]-f[i+1,j+1]|;

  拉普拉斯算子:G[I,j]=|f[i+1,j]+f[i-1,j]+f(i,j+1)+f[i,j-1]-4f[i,j]|;

  其中G[i,j]表示处理后(i,j)点的灰度值,f[i,j]表示处理前该点的灰度值。

  笔者开发的该图像处理程序在Windows2000环境下编译通过,下面图2给出了依据图像处理算法得到的图像二值化、高通滤波、Sobel边缘算子的处理结果,读者需要注意的是我在进行Sobel算子进行处理后,又对它进行了二值化处理,这才得到C图。关于如何实现二值化图像,我会后续撰文对相关知识进行介绍。


==============================================================
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize);

void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma);

void Grad(SIZE sz, LPBYTE pGray, int *pGradX, int *pGradY, int *pMag);

void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst);

void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
          double dRatHigh, double dRatLow);

void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult);

void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz);

void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
       double dRatHigh, LPBYTE pResult);

#include "afx.h"
#include "math.h"
#include "canny.h"

//  一维高斯分布函数,用于平滑函数中生成的高斯滤波系数
void CreatGauss(double sigma, double **pdKernel, int *pnWidowSize)
{

 LONG i;

 //数组中心点
 int nCenter;

 //数组中一点到中心点距离
 double dDis;

 //中间变量
 double dValue;
 double dSum;
 dSum = 0;

 // [-3*sigma,3*sigma] 以内数据,会覆盖绝大部分滤波系数
 *pnWidowSize = 1+ 2*ceil(3*sigma);

 nCenter = (*pnWidowSize)/2;

 *pdKernel = new double[*pnWidowSize];

 //生成高斯数据
 for(i=0;i<(*pnWidowSize);i++)
 {
  dDis = double(i - nCenter);
  dValue = exp(-(1/2)*dDis*dDis/(sigma*sigma))/(sqrt(2*3.1415926)*sigma);
  (*pdKernel)[i] = dValue;
  dSum+=dValue;

 }
 //归一化
 for(i=0;i<(*pnWidowSize);i++)
 {
  (*pdKernel)[i]/=dSum;
 }

}

//用高斯滤波器平滑原图像
void GaussianSmooth(SIZE sz, LPBYTE pGray, LPBYTE pResult, double sigma)
{
 LONG x, y;
 LONG i;

 //高斯滤波器长度
 int nWindowSize;

 //窗口长度
 int nLen;

 //一维高斯滤波器
 double *pdKernel;

 //高斯系数与图像数据的点乘
 double dDotMul;
 
 //滤波系数总和
 double dWeightSum;
 
 double *pdTemp;
 pdTemp = new double[sz.cx*sz.cy];

 //产生一维高斯数据
 CreatGauss(sigma, &pdKernel, &nWindowSize);

 nLen = nWindowSize/2;
 
 //x方向滤波
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   dDotMul = 0;
   dWeightSum = 0;
   for(i=(-nLen);i<=nLen;i++)
   {
    //判断是否在图像内部
    if((i+x)>=0 && (i+x)<sz.cx)
    {
     dDotMul+=(double)pGray[y*sz.cx+(i+x)] * pdKernel[nLen+i];
     dWeightSum += pdKernel[nLen+i];
    }
   }
   pdTemp[y*sz.cx+x] = dDotMul/dWeightSum;
  }
 }

 //y方向滤波
 for(x=0; x<sz.cx;x++)
 {
  for(y=0; y<sz.cy; y++)
  {
   dDotMul = 0;
   dWeightSum = 0;
   for(i=(-nLen);i<=nLen;i++)
   {
    if((i+y)>=0 && (i+y)< sz.cy)
    {
     dDotMul += (double)pdTemp[(y+i)*sz.cx+x]*pdKernel[nLen+i];
     dWeightSum += pdKernel[nLen+i];
    }
   }
   pResult[y*sz.cx+x] = (unsigned char)dDotMul/dWeightSum;
  }
 }

 delete []pdKernel;
 pdKernel = NULL;

 delete []pdTemp;
 pdTemp = NULL;

}

// 方向导数,求梯度
void Grad(SIZE sz, LPBYTE pGray,int *pGradX, int *pGradY, int *pMag)
{
 LONG y,x;

 //x方向的方向导数
 for(y=1;y<sz.cy-1;y++)
 {
  for(x=1;x<sz.cx-1;x++)
  {
   pGradX[y*sz.cx +x] = (int)( pGray[y*sz.cx+x+1]-pGray[y*sz.cx+ x-1]  );
  }
 }

 //y方向方向导数
 for(x=1;x<sz.cx-1;x++)
 {
  for(y=1;y<sz.cy-1;y++)
  {
   pGradY[y*sz.cx +x] = (int)(pGray[(y+1)*sz.cx +x] - pGray[(y-1)*sz.cx +x]);
  }
 }

 //求梯度

 //中间变量
 double dSqt1;
 double dSqt2;

 for(y=0; y<sz.cy; y++)
 {
  for(x=0; x<sz.cx; x++)
  {
   //二阶范数求梯度
   dSqt1 = pGradX[y*sz.cx + x]*pGradX[y*sz.cx + x];
   dSqt2 = pGradY[y*sz.cx + x]*pGradY[y*sz.cx + x];
   pMag[y*sz.cx+x] = (int)(sqrt(dSqt1+dSqt2)+0.5);
  }
 }
}

//非最大抑制
void NonmaxSuppress(int *pMag, int *pGradX, int *pGradY, SIZE sz, LPBYTE pNSRst)
{
 LONG y,x;
 int nPos;

 //梯度分量
 int gx;
 int gy;

 //中间变量
 int g1,g2,g3,g4;
 double weight;
 double dTmp,dTmp1,dTmp2;

 //设置图像边缘为不可能的分界点
 for(x=0;x<sz.cx;x++)
 {
  pNSRst[x] = 0;
  pNSRst[(sz.cy-1)*sz.cx+x] = 0;

 }
 for(y=0;y<sz.cy;y++)
 {
  pNSRst[y*sz.cx] = 0;
  pNSRst[y*sz.cx + sz.cx-1] = 0;
 }

 for(y=1;y<sz.cy-1;y++)
 {
  for(x=1;x<sz.cx-1;x++)
  {
   //当前点
   nPos = y*sz.cx + x;

   //如果当前像素梯度幅度为0,则不是边界点
   if(pMag[nPos] == 0)
   {
    pNSRst[nPos] = 0;
   }
   else
   {
    //当前点的梯度幅度
    dTmp = pMag[nPos];

    //x,y方向导数
    gx = pGradX[nPos];
    gy = pGradY[nPos];

    //如果方向导数y分量比x分量大,说明导数方向趋向于y分量
    if(abs(gy) > abs(gx))
    {
     //计算插值比例
     weight = fabs(gx)/fabs(gy);

     g2 = pMag[nPos-sz.cx];
     g4 = pMag[nPos+sz.cx];

     //如果x,y两个方向导数的符号相同
     //C 为当前像素,与g1-g4 的位置关系为:
     //g1 g2
     //      C
     //       g4 g3
     if(gx*gy>0)
     {
      g1 = pMag[nPos-sz.cx-1];
      g3 = pMag[nPos+sz.cx+1];
     }

     //如果x,y两个方向的方向导数方向相反
     //C是当前像素,与g1-g4的关系为:
     //       g2 g1
     //        C
     //    g3 g4
     else
     {
      g1 = pMag[nPos-sz.cx+1];
      g3 = pMag[nPos+sz.cx-1];
     }
    }

    //如果方向导数x分量比y分量大,说明导数的方向趋向于x分量
    else
    {
     //插值比例
     weight = fabs(gy)/fabs(gx);

     g2 = pMag[nPos+1];
     g4 = pMag[nPos-1];

     //如果x,y两个方向的方向导数符号相同
     //当前像素C与 g1-g4的关系为
     //  g3
     //  g4 C g2
     //       g1
     if(gx * gy > 0)
     {
      g1 = pMag[nPos+sz.cx+1];
      g3 = pMag[nPos-sz.cx-1];
     }
    
     //如果x,y两个方向导数的方向相反
     // C与g1-g4的关系为
     //   g1
     //    g4 C g2
     //     g3
     else
     {
      g1 = pMag[nPos-sz.cx+1];
      g3 = pMag[nPos+sz.cx-1];
     }
    }

    //利用 g1-g4 对梯度进行插值
    {
     dTmp1 = weight*g1 + (1-weight)*g2;
     dTmp2 = weight*g3 + (1-weight)*g4;

     //当前像素的梯度是局部的最大值
     //该点可能是边界点
     if(dTmp>=dTmp1 && dTmp>=dTmp2)
     {
      pNSRst[nPos] = 128;
     }
     else
     {
      //不可能是边界点
      pNSRst[nPos] = 0;
     }
    }
   }
  }
 }
}

// 统计pMag的直方图,判定阈值
void EstimateThreshold(int *pMag, SIZE sz, int *pThrHigh, int *pThrLow, LPBYTE pGray,
          double dRatHigh, double dRatLow)
{
 LONG y,x,k;

 //该数组的大小和梯度值的范围有关,如果采用本程序的算法
 //那么梯度的范围不会超过pow(2,10)
 int nHist[256];

 //可能边界数
 int nEdgeNum;

 //最大梯度数
 int nMaxMag;

 int nHighCount;

 nMaxMag = 0;

 //初始化
 for(k=0;k<256;k++)
 {
  nHist[k] = 0;
 }
 //统计直方图,利用直方图计算阈值
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   if(pGray[y*sz.cx+x]==128)
   {
    nHist[pMag[y*sz.cx+x]]++;
   }
  }
 }

 nEdgeNum = nHist[0];
 nMaxMag = 0;

 //统计经过“非最大值抑制”后有多少像素
 for(k=1;k<256;k++)
 {
  if(nHist[k] != 0)
  {
   nMaxMag = k;
  }

  //梯度为0的点是不可能为边界点的
  //经过non-maximum suppression后有多少像素
  nEdgeNum += nHist[k];

 }

 //梯度比高阈值*pThrHigh 小的像素点总书目
 nHighCount = (int)(dRatHigh * nEdgeNum + 0.5);

 k=1;
 nEdgeNum = nHist[1];

 //计算高阈值
 while((k<(nMaxMag-1)) && (nEdgeNum < nHighCount))
 {
  k++;
  nEdgeNum += nHist[k];
 }

 *pThrHigh = k;

 //低阈值
 *pThrLow = (int)((*pThrHigh) * dRatLow + 0.5);

}

//利用函数寻找边界起点
void Hysteresis(int *pMag, SIZE sz, double dRatLow, double dRatHigh, LPBYTE pResult)
{
 LONG y,x;

 int nThrHigh,nThrLow;

 int nPos;
 //估计TraceEdge 函数需要的低阈值,以及Hysteresis函数使用的高阈值
 EstimateThreshold(pMag, sz,&nThrHigh,&nThrLow,pResult,dRatHigh,dRatLow);

 //寻找大于dThrHigh的点,这些点用来当作边界点,
 //然后用TraceEdge函数跟踪该点对应的边界
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   nPos = y*sz.cx + x;

   //如果该像素是可能的边界点,并且梯度大于高阈值,
   //该像素作为一个边界的起点
   if((pResult[nPos]==128) && (pMag[nPos] >= nThrHigh))
   {
    //设置该点为边界点
    pResult[nPos] = 255;
    TraceEdge(y,x,nThrLow,pResult,pMag,sz);
   }

  }
 }

 //其他点已经不可能为边界点
 for(y=0;y<sz.cy;y++)
 {
  for(x=0;x<sz.cx;x++)
  {
   nPos = y*sz.cx + x;

   if(pResult[nPos] != 255)
   {
    pResult[nPos] = 0;
   }
  }
 }
}

//根据Hysteresis 执行的结果,从一个像素点开始搜索,搜索以该像素点为边界起点的一条边界的
//一条边界的所有边界点,函数采用了递归算法
//       从(x,y)坐标出发,进行边界点的跟踪,跟踪只考虑pResult中没有处理并且可能是边界
//  点的像素(=128),像素值为0表明该点不可能是边界点,像素值为255表明该点已经是边界点

void TraceEdge(int y, int x, int nThrLow, LPBYTE pResult, int *pMag, SIZE sz)
{
 //对8邻域像素进行查询
 int xNum[8] = {1,1,0,-1,-1,-1,0,1};
 int yNum[8] = {0,1,1,1,0,-1,-1,-1};

 LONG yy,xx,k;

 for(k=0;k<8;k++)
 {
  yy = y+yNum[k];
  xx = x+xNum[k];

  if(pResult[yy*sz.cx+xx]==128 && pMag[yy*sz.cx+xx]>=nThrLow )
  {
   //该点设为边界点
   pResult[yy*sz.cx+xx] = 255;

   //以该点为中心再进行跟踪
   TraceEdge(yy,xx,nThrLow,pResult,pMag,sz);
  }
 }
}


// Canny算子
void Canny(LPBYTE pGray, SIZE sz, double sigma, double dRatLow,
       double dRatHigh, LPBYTE pResult)
{
 //经过高斯滤波后的图像
 LPBYTE pGaussSmooth;

 pGaussSmooth = new unsigned char[sz.cx*sz.cy];

 //x方向导数的指针
 int *pGradX;
 pGradX = new int[sz.cx*sz.cy];
 
 //y方向
 int *pGradY;
 pGradY = new int[sz.cx*sz.cy];
 
 //梯度的幅度
 int *pGradMag;
 pGradMag = new int[sz.cx*sz.cy];

 //对原图高斯滤波
 GaussianSmooth(sz,pGray,pGaussSmooth,sigma);

 //计算方向导数和梯度的幅度
 Grad(sz,pGaussSmooth,pGradX,pGradY,pGradMag);

 //应用非最大抑制
 NonmaxSuppress(pGradMag,pGradX,pGradY,sz,pResult);

 //应用Hysteresis,找到所有边界
 Hysteresis(pGradMag,sz,dRatLow,dRatHigh,pResult);

 delete[] pGradX;
 pGradX = NULL;
 delete[] pGradY;
 pGradY = NULL;
 delete[] pGradMag;
 pGradMag = NULL;
 delete[] pGaussSmooth;
 pGaussSmooth = NULL;


 
}

/*
void CChildWnd::OnCanny()
{
 if (! m_fOpenFile)
 {
  return;
 }
 m_fDone = TRUE;
 RGBToGray(szImg, aRGB, aGray, BPP);
 Canny(aGray,szImg,0.1,0.9,0.76,aBinImg);
 
 ShowGrayImage("l",szImg,aBinImg);
}
//*/

 

相关文章推荐

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Canny算子理解,及Matlab实现

JohnCanny于1986年提出Canny算子,它与Marr(LoG)边缘检测方法类似,也属于是先平滑后求导数的方法。本文对根据上述的边缘检测过程对Canny检测算法的原理进行介绍。 并结合实验,对...
  • q664111
  • q664111
  • 2016年04月10日 23:53
  • 6033

Canny边缘检测及C++实现

Canny边缘检测算法是澳大利亚科学家John F. Canny在1986年提出来的,不得不提一下的是当年John Canny本人才28岁!到今天已经30年过去了,Canny算法仍然是图像边缘检测算法...
  • dcrmg
  • dcrmg
  • 2016年08月28日 13:26
  • 6688

Canny边缘检测算子

Canny提出一种新的边缘检测方法,它对受白噪声影响的阶跃型边缘是最优的。Canny检测子的最优性与三个标准有关:第一、检测标准:不失去重要的边缘,不应有虚假的边缘;第二、定位标准:实际边缘与检测到的...
  • utimes
  • utimes
  • 2013年10月13日 23:29
  • 10797

canny边缘检测C\C++实现

原理不多说,直接上代码 #define PI 3.1415926 #define EDGE_VALUE 235 #define NON_EDGE_VALUE 16...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

基于OPENCV的CANNY边缘检测算子详细代码实现

关于canny算子边缘检测的原理,此处不再做详细说明,这里直接将实现代码附在下面。读者可对照代码,进行学习。 //canny边缘检测算子 /* #include   #include #i...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

Robert算子、sobel算子、Prewitt算子、canny边缘检测算子

Robert算子、sobel算子、Prewitt算子、canny边缘检测算子 之前做的笔记,懒得再敲一遍了,先传上来,方便自己以后加深记忆...

prewitt和sobel算子 边缘检测

#include "cv.h" #include "highgui.h" #include #pragma comment(lib, "cv.lib")   #pragma comment(li...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:canny算子代码
举报原因:
原因补充:

(最多只允许输入30个字)