【排序算法】归并排序原理及Java实现

1、基本思想:

归并排序就是利用归并的思想实现的排序方法。而且充分利用了完全二叉树的深度是这里写图片描述的特性,因此效率比较高。其基本原理如下:对于给定的一组记录,利用递归与分治技术将数据序列划分成为越来越小的半子表,在对半子表排序,最后再用递归方法将排好序的半子表合并成为越来越大的有序序列。
经过第一轮比较后得到最小的记录,然后将该记录的位置与第一个记录的位置交换;接着对不包括第一个记录以外的其他记录进行第二次比较,得到最小记录并与第二个位置记录交换;重复该过程,知道进行比较的记录只剩下一个为止。

2、复杂度分析

一趟归并需要将数组 a[]中相邻的长度为h的有序序列进行两两归并.并将结果放到temp[]中,这需要将待排序列中的所有记录扫描一遍,因此耗费O(n),而又完全二叉树的深度可知,整个归并排序需要进行(这里写图片描述)次,因此总的时间复杂度为O(nlogn),而且这是归并排序算法中最好、最坏、平均的时间性能。
由于归并排序在归并过程中需要与原始序列同样数量的存储空间存放归并结果以及递归时深度为这里写图片描述的栈空间,因此空间复杂度为O(n+logn).
另外,对代码进行仔细研究,发现merge函数中有

### 归并排序Java中的实现 归并排序是一种经典的分治算法,其基本原理是将数组分成较小的子数组直到每个子数组仅有一个元素,之后再逐步合并这些有序的子数组来形成最终的大规模有序数组。下面是一个简单的归并排序实现: ```java public class MergeSort { public static void main(String[] args) { int[] array = {38, 27, 43, 3, 9, 82, 10}; mergeSort(array, 0, array.length - 1); for (int i : array) { System.out.print(i + " "); } } private static void mergeSort(int[] nums, int left, int right) { if (left < right) { int mid = (left + right) / 2; mergeSort(nums, left, mid); // 对左半边进行递归排序 mergeSort(nums, mid + 1, right);// 对右半边进行递归排序 merge(nums, left, mid, right); // 合并两个已排序的部分 } } private static void merge(int[] nums, int left, int mid, int right) { int n1 = mid - left + 1; int n2 = right - mid; /* 创建临时数组 */ int[] L = new int[n1]; int[] R = new int[n2]; /* 将数据复制到临时数组 */ for (int i = 0; i < n1; ++i) L[i] = nums[left + i]; for (int j = 0; j < n2; ++j) R[j] = nums[mid + 1 + j]; /* 合并临时数组 */ // 初始化指针 int i = 0, j = 0; // 初始索引k=left int k = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { nums[k] = L[i]; i++; } else { nums[k] = R[j]; j++; } k++; } /* 复制剩余的L[]元素,如果有的话 */ while (i < n1) { nums[k] = L[i]; i++; k++; } /* 复制剩余的R[]元素,如果有的话 */ while (j < n2) { nums[k] = R[j]; j++; k++; } } } ``` 此代码展示了如何通过创建辅助函数`merge()`来进行两部分之间的合并操作以及核心逻辑所在的`mergeSort()`方法[^1]。 尽管现代版本的Java标准库中对于`Arrays.sort()`和`Collections.sort()`采用了更高效的TimSort作为默认排序方式[^2],上述传统形式的归并排序依然具有重要的学习价值,并且适用于教学目的或者特定场景下的应用开发需求[^3]。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值