莫轻言已成功部署大数据,也许你离达标还相去甚远!

转载 2013年12月06日 10:07:46
摘要:系统的吞吐量并不能代表大数据技术的成功部署,能给企业来带价值、业务带来突破性的改善才是衡量大数据部署成败的核心。在这里,10gen战略副总裁Matt Asay带来了他为成功总结的4个标准。

在大数据范畴大展拳脚肯定是个正确方向,同时世界各地的初创公司及企业巨头也在借力大数据和大数据应用创造价值——将大量的数据处理转化为金钱或竞争优势。然而光彩的背后,总是掩饰着一些不可忽视的真相。简而言之,不是所有在大数据上的尝试都得到了应有的回报,而且远非如此。同样这里也有另一个不容忽视的真相,在IT企业界,大数据“成功”定义的标准非常宽松,甚至“我们并没有完全失败”这种的观念都可以归结于“成功”。

那么大数据应用成功的标准究竟是什么?10gen战略副总裁Matt Asay带来了他为成功总结的4个标准:

首先,必须要可以运作

大数据应该为行业创造切实的价值,不止是高科技。McKinsey在关于大数据未来的报告中指出,大数据在医疗、政府、零售以及制造产业上拥有万亿的潜在价值。机构对大数据的成功实现需要在一下几个方面带来切实的收获:附加收益、提升客户满意度、削减成本等。

其次,必须有本质提高

大数据交付的不应该只是渐进式的商务模式改善,更应该是本质上的突破。比如就初创企业Foursquare来说,为了发现数据之间的关系,Foursquare使用了机器学习算法让系统可以建立“Explore”,一个社交推荐系统可以实时的给用户推荐有价值的位置信息,使用新的业务模式去驱动位置信息类型业务。“Explore”依赖大数据技术,同时从多于3000万个位置信息中获取见解。现在Foursquare已经具备了理解人们之间如何进行互动的能力,并且位置信息也不只止步平台,而是真实世界。

再次,必须具备高速度

传统数据库技术会拉低大数据的性能,同样也是非常繁琐的,因为不管这项技术是否迎合你的需求,专利许可涉及到的企业繁琐制度远超出你的想象。一个成功大数据项目,使用的工具集和数据库技术必须同时满足数据体积及多样性的双重需求。论据是:一个Hadoop集群只需几个小时就可以搭建,搭建完成后就可以提供快速的数据分析。事实上大部分的大数据技术都是开源的,这就意味着你可以根据你的需求添加支持和服务,同时许可不再是快速部署的阻碍之一。

最后,必须能以前所不能

在大数据出现之前,类似Gilt Groupe这种“限时抢购”公司根本不可能实现。限时抢购网站需要日处理上千万用户的登陆,并且会造成非常高的服务器负载峰值——通过高性能、快速扩展的大数据技术让这种商业模型成为可能。

总结

大数据部署成败的关键不是系统每秒可以处理多少数据量,而是使用大数据后给公司业务带来了多少价值以及是否让业务有突破性的提升。专注业务类型,选择适合公司业务的工具集才是该重点关注的领域。

原文链接: Four Signs Of A Successful Big Data Implementation (编译/仲浩 审校/王旭东)

转自:摘要:系统的吞吐量并不能代表大数据技术的成功部署,能给企业来带价值、业务带来突破性的改善才是衡量大数据部署成败的核心。在这里,10gen战略副总裁Matt Asay带来了他为成功总结的4个标准。

在大数据范畴大展拳脚肯定是个正确方向,同时世界各地的初创公司及企业巨头也在借力大数据和大数据应用创造价值——将大量的数据处理转化为金钱或竞争优势。然而光彩的背后,总是掩饰着一些不可忽视的真相。简而言之,不是所有在大数据上的尝试都得到了应有的回报,而且远非如此。同样这里也有另一个不容忽视的真相,在IT企业界,大数据“成功”定义的标准非常宽松,甚至“我们并没有完全失败”这种的观念都可以归结于“成功”。

那么大数据应用成功的标准究竟是什么?10gen战略副总裁Matt Asay带来了他为成功总结的4个标准:

首先,必须要可以运作

大数据应该为行业创造切实的价值,不止是高科技。McKinsey在关于大数据未来的报告中指出,大数据在医疗、政府、零售以及制造产业上拥有万亿的潜在价值。机构对大数据的成功实现需要在一下几个方面带来切实的收获:附加收益、提升客户满意度、削减成本等。

其次,必须有本质提高

大数据交付的不应该只是渐进式的商务模式改善,更应该是本质上的突破。比如就初创企业Foursquare来说,为了发现数据之间的关系,Foursquare使用了机器学习算法让系统可以建立“Explore”,一个社交推荐系统可以实时的给用户推荐有价值的位置信息,使用新的业务模式去驱动位置信息类型业务。“Explore”依赖大数据技术,同时从多于3000万个位置信息中获取见解。现在Foursquare已经具备了理解人们之间如何进行互动的能力,并且位置信息也不只止步平台,而是真实世界。

再次,必须具备高速度

传统数据库技术会拉低大数据的性能,同样也是非常繁琐的,因为不管这项技术是否迎合你的需求,专利许可涉及到的企业繁琐制度远超出你的想象。一个成功大数据项目,使用的工具集和数据库技术必须同时满足数据体积及多样性的双重需求。论据是:一个Hadoop集群只需几个小时就可以搭建,搭建完成后就可以提供快速的数据分析。事实上大部分的大数据技术都是开源的,这就意味着你可以根据你的需求添加支持和服务,同时许可不再是快速部署的阻碍之一。

最后,必须能以前所不能

在大数据出现之前,类似Gilt Groupe这种“限时抢购”公司根本不可能实现。限时抢购网站需要日处理上千万用户的登陆,并且会造成非常高的服务器负载峰值——通过高性能、快速扩展的大数据技术让这种商业模型成为可能。

总结

大数据部署成败的关键不是系统每秒可以处理多少数据量,而是使用大数据后给公司业务带来了多少价值以及是否让业务有突破性的提升。专注业务类型,选择适合公司业务的工具集才是该重点关注的领域。

原文链接: Four Signs Of A Successful Big Data Implementation (编译/仲浩 审校/王旭东)

 转自:http://www.csdn.net/article/2013-07-12/2816208-four-signs-successful-big-data

大数据时代数据库混合部署方案探究

 大数据时代数据库混合部署方案探究   引言 在大数据时代,“多种架构支持多类应用”成为数据库行业应对大数据的基本思路,数据库行业出现互为补充的三大阵营,适用于事务处理应用的OldSQ...
  • dzta831121
  • dzta831121
  • 2014年12月25日 16:33
  • 1261

大数据平台生产环境部署指南

总结一下在生产环境部署Hadoop+Spark+HBase+Hue等产品遇到的问题、提高效率的方法和相关的配置。集群规划假设现在生产环境的信息如下: 服务器数量:6 操作系统:Cento...
  • qq1010885678
  • qq1010885678
  • 2016年03月18日 13:44
  • 3904

大数据时代之hadoop(一):hadoop安装

Hadoop的运行模式有以下三种: 独立模式(standalone或local mode):无需任何守护进程(daemon),所有程序都在单个JVM上执行。主要用在开发阶段。...
  • MINEZHANGHAO
  • MINEZHANGHAO
  • 2014年10月13日 09:37
  • 4103

Ambari快速部署Hadoop大数据环境

Ambari 是什么 Ambari 跟 Hadoop 等开源软件一样,也是 Apache Software Foundation 中的一个项目,并且是顶级项目。...
  • cy309173854
  • cy309173854
  • 2017年02月27日 11:36
  • 4455

poj 2104 K-th Number 区间第K大 二分 离散化 + (莫队 树状数组/平方分解/线段树)

题目 题目链接:http://poj.org/problem?id=2104 题目来源:《挑战》例题。 简要题意:求区间第kk大。...
  • xc19952007
  • xc19952007
  • 2016年02月29日 21:55
  • 553

青春年华莫虚度

青春年华莫虚度,寄语公司年轻的同事们。 --------------------- 周六我面试了一名RF(射频)工程师。因为是朋友推荐,加之谭工、马工都认为基础不错,故而十分重视,用心去系统考察了...
  • FneDo
  • FneDo
  • 2014年06月17日 16:42
  • 954

大数据Hadoop之环境搭建

环境参数 下载地址 相关的Linux操作 Hadoop配置文件的修改 下一步进行HDFS配置 1.环境参数 编程语言:JAVA Linux环境:Centos 6.4 Hadoop版本...
  • chao2016
  • chao2016
  • 2018年01月07日 22:31
  • 28

我们整理了2017年最新政府大数据应用案例!

来源:数据观 本文长度为6000字,建议阅读10分钟 本文为你介绍政府拥有数据资产类型和地方政府大数据应用案例及应用启示。 在我国,政府部门掌握着全社会量最大、最核心的数据。以往地方政府...
  • eNohtZvQiJxo00aTz3y8
  • eNohtZvQiJxo00aTz3y8
  • 2017年11月15日 00:00
  • 1094

大数据部署方案研究比较总结

1 套装软件搭配自组硬件   目前包括Hadoop、Greenplum以及Aster Data都有纯软件产品以及软硬件整合的一体机产品,如果企业选择以纯软件产品,虽然具有可以自由搭配硬件的优势,但却...
  • debugingstudy
  • debugingstudy
  • 2013年11月14日 23:15
  • 1542

大数据用到的一些工具

MongoDB-一种非常流行的、跨平台、面向document的数据库。 Elasticsearch-专为云计算设计的分布式REST风格的搜索引擎。 Cassandra-一个开源的分布式数据...
  • xushuai110
  • xushuai110
  • 2016年01月29日 10:02
  • 570
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:莫轻言已成功部署大数据,也许你离达标还相去甚远!
举报原因:
原因补充:

(最多只允许输入30个字)