神经网络BP算法(C程序实现)

转载 2006年05月23日 21:25:00

文件输入输出目录为:F:/BP/

训练样本文件名:训练样本.txt

值为:

1
1
-1
1
-1
1
0
1
0
1

输出文件名为:阈值.txt    权值.txt

=========================

#include "stdlib.h"
#include "math.h"
#include "conio.h"
#include "stdio.h"
#define N 2 /*/学习样本个数*/
#define IN 3 /*/输入层神经元数目*/
#define HN 3 /*/隐层神经元数目*/
#define ON 2 /*/输出层神经元数目*/
#define Z 20 /*/旧权值保存-》每次study的权值都保存下来*/
double P[IN]; /*/单个样本输入数据*/
double T[ON]; /*/单个样本教师数据*/
double W[HN][IN]; /*/输入层至隐层权值*/
double V[ON][HN]; /*/隐层至输出层权值*/
double X[HN]; /*/隐层的输入*/
double Y[ON]; /*/输出层的输入*/
double H[HN]; /*/隐层的输出*/
double O[ON]; /*/输出层的输出*/
double YU_HN[HN]; /*/隐层的阈值*/
double YU_ON[ON]; /*/输出层的阈值*/
double err_m[N]; /*/第m个样本的总误差*/
double a; /*/输出层至隐层的学习效率*/
double b; /*/隐层至输入层学习效率*/
double alpha;  /*/动量因子,改进型bp算法使用*/
double d_err[ON];

FILE *fp;
/*定义一个放学习样本的结构*/
struct {
double input[IN];
double teach[ON];
}Study_Data[N];

/*改进型bp算法用来保存每次计算的权值*/
struct {
double old_W[HN][IN];
double old_V[ON][HN];
}Old_WV[Z];


int Start_Show()
{
clrscr();
printf("/n                       ***********************/n");
printf("                       *    Welcome to use   */n");
printf("                       *  this program of    */n");
printf("                       *  calculating the BP */n");
printf("                       *      model!         */n");
printf("                       *   Happy every day!  */n");
printf("                       ***********************/n");
printf("/n/nBefore starting,please read the follows carefully:/n/n");
printf("    1.Please ensure the Path of the '训练样本.txt'(xunlianyangben.txt) is /ncorrect,like 'F:/BP/训练样本.txt'!/n");
printf("    2.The calculating results will be saved in the Path of 'F://BP//'!/n");
printf("    3.The program will load 10 datas when running from 'F://BP//训练样本.txt'!/n");
printf("    4.The program of BP can study itself for no more than 30000 times./nAnd surpassing the number,the program will be ended by itself in/npreventing running infinitely because of error!/n");
printf("/n/n/n");
printf("Now press any key to start.../n");
getch();
getch();
clrscr();
}

int End_Show()
{
printf("/n/n---------------------------------------------------/n");
printf("The program has reached the end successfully!/n/nPress any key to exit!/n/n");
printf("/n                       ***********************/n");
printf("                       *    This is the end  */n");
printf("                       * of the program which*/n");
printf("                       * can calculate the BP*/n");
printf("                       *      model!         */n");
printf("                       ***********************/n");
printf("                       *  Thanks for using!  */n");
printf("                       *   Happy every day!  */n");
printf("                       ***********************/n");
getch();
exit(0);
}

GetTrainingData()      /*OK*/
{ int m,i,j;
  int datr;

if((fp=fopen("f://bp//训练样本.txt","r"))==NULL)         /*读取训练样本*/
 {
  printf("Cannot open file strike any key exit!");
  getch();
  exit(1);
 }

m=0;
i=0;
j=0;
while(fscanf(fp,"%d",&datr)!=EOF)
 {j++;
  if(j<=(N*IN))
   {if(i     {
      Study_Data[m].input[i]=datr;
      /*printf("/nthe Study_Datat[%d].input[%d]=%f/n",m,i,Study_Data[m].input[i]);getch();*/  /*use to check the loaded training datas*/
      }
    if(m==(N-1)&&i==(IN-1))
      {
       m=0;
       i=-1;
      }
    if(i==(IN-1))
      {
       m++;
       i=-1;
      }
   }
   else if((N*IN)    {if(i      {Study_Data[m].teach[i]=datr;
       /*printf("/nThe Study_Data[%d].teach[%d]=%f",m,i,Study_Data[m].teach[i]);getch();*/  /*use to check the loaded training datas*/
       }
     if(m==(N-1)&&i==(ON-1))
      printf("/n");

     if(i==(ON-1))
      {m++;
       i=-1;
      }
    }
  i++;
 }
fclose(fp);
printf("/nThere are [%d] datats that have been loaded successfully!/n",j);


/*show the data which has been loaded!*/
printf("/nShow the data which has been loaded as follows:/n");
for(m=0;m {for(i=0;i   {printf("/nStudy_Data[%d].input[%d]=%f",m,i,Study_Data[m].input[i]);
   }
  for(j=0;j   {printf("/nStudy_Data[%d].teach[%d]=%f",m,j,Study_Data[m].teach[j]);
   }
 }
printf("/n/nPress any key to start calculating...");
getch();
 return 1;
}


/*///////////////////////////////////*/
/*初始化权、阈值子程序*/
/*///////////////////////////////////*/
initial()
{int i;
 int ii;
 int j;
 int jj;
 int k;
 int kk;
/*隐层权、阈值初始化*/

 for(i=0;i {
  for(j=1;j   {W[i][j]=(double)((rand()/32767.0)*2-1); /*初始化输入层到隐层的权值,随机模拟0 和 1 -1 */
    printf("w[%d][%d]=%f/n",i,j,W[i][j]);
   }
  }
 for(ii=0;ii {
  for(jj=0;jj   {V[ii][jj]= (double)((rand()/32767.0)*2-1); /*初始化隐层到输出层的权值,随机模拟0 和 1 -1*/
    printf("V[%d][%d]=%f/n",ii,jj,V[ii][jj]);
   }
  }
 for(k=0;k {
  YU_HN[k] = (double)((rand()/32767.0)*2-1);  /*隐层阈值初始化 ,-0.01 ~ 0.01 之间*/
  printf("YU_HN[%d]=%f/n",k,YU_HN[k]);
  }
 for(kk=0;kk {
  YU_ON[kk] = (double)((rand()/32767.0)*2-1); /*输出层阈值初始化 ,-0.01 ~ 0.01 之间*/
  }
  return 1;
}/*子程序initial()结束*/


/*//////////////////////////////////////////*/
/*第m个学习样本输入子程序*/
/*/////////////////////////////////////////*/
input_P(int m)
{ int i,j;

  for(i=0;i  {P[i]=Study_Data[m].input[i];
   printf("P[%d]=%f/n",i,P[i]);
  }
/*获得第m个样本的数据*/
return 1;
}/*子程序input_P(m)结束*/

/*/////////////////////////////////////////*/
/*第m个样本教师信号子程序*/
/*/////////////////////////////////////////*/
input_T(int m)
{int k;

 for(k=0;k  T[k]=Study_Data[m].teach[k];
return 1;
}/*子程序input_T(m)结束*/


H_I_O()
{
 double sigma;
 int i,j;
 for(j=0;j  {
   sigma=0;
   for(i=0;i    {sigma+=W[j][i]*P[i];/*求隐层内积*/
    }

   X[j]=sigma-YU_HN[i];/*求隐层净输入,为什么减隐层的阀值*/
   H[j]=1.0/(1.0+exp(-X[j]));/*求隐层输出 siglon算法*/
   }
return 1;
}/*子程序H_I_O()结束*/

 

O_I_O()
{int k;
 int j;
 double sigma;
 for(k=0;k {
  sigma=0.0;
  for(j=0;j  {
   sigma+=V[k][j]*H[k];
  }
 Y[k]=sigma-YU_ON[k];
 O[k]=1.0/(1.0+exp(-Y[k]));
 }
return 1;
}


int Err_O_H(int m)
{int k;
double abs_err[ON];
double sqr_err=0;
for (k=0;k  {
  abs_err[k]=T[k]-O[k];
  sqr_err+=(abs_err[k])*(abs_err[k]);
  d_err[k]=abs_err[k]*O[k]*(1.0-O[k]);
  err_m[m]=sqr_err/2;
  }
return 1;
}

 

double e_err[HN];
int Err_H_I()
{
 int j,k;
 double sigma;
 for(j=0;j {
  sigma=0.0;
  for(k=0;k  {
   sigma=d_err[k]*V[k][j];
   }
 e_err[j]=sigma*H[j]*(1-H[j]);
 }
return 1;
}


saveWV(int m)
{int i;
 int ii;
 int j;
 int jj;
 for(i=0;i  {
   for(j=0;j    {
     Old_WV[m].old_W[i][j] = W[i][j];
    }
  }
 for(ii=0;ii  {
   for(jj=0;jj    {
     Old_WV[m].old_V[ii][jj] = V[ii][jj];
    }
  }
return 1;
}


int Delta_O_H(int n)                 /*(int m,int n)*/
{int k,j;
 if(n<1)  /*n<=1*/
  {
   for (k=0;k    {
     for (j=0;j      {
       V[k][j]=V[k][j]+a*d_err[k]*H[j];
      }
     YU_ON[k]+=a*d_err[k];
    }
  }
 else if(n>1)
  {
   for (k=0;k    {
     for (j=0;j      {
       V[k][j]=V[k][j]+a*d_err[k]*H[j]+alpha*(V[k][j]-Old_WV[(n-1)].old_V[k][j]);
      }
     YU_ON[k]+=a*d_err[k];
    }
  }
return 1;
}

Delta_H_I(int n)               /*(int m,int n)*/
{ int i,j;

if(n<=1)   /*n<=1*/
 {
  for (j=0;j   {
    for (i=0;i     {
      W[j][i]=W[j][i]+b*e_err[j]*P[i];
     }
    YU_HN[j]+=b*e_err[j];
   }
 }
else if(n>1)
 {
  for(j=0;j   {
    for(i=0;i     {
      W[j][i]=W[j][i]+b*e_err[j]*P[i]+alpha*(W[j][i]-Old_WV[(n-1)].old_W[j][i]);
     }
    YU_HN[j]+=b*e_err[j];
   }
 }
return 1;
}

 

double Err_Sum()
{int m;
double total_err=0;
for(m=0;m {
  total_err+=err_m[m];
 }
return total_err;
}

 

void savequan()
{ int i,j,k;
  int ii,jj,kk;

if((fp=fopen("f://bp//权值.txt","a"))==NULL)         /*save the result at f:/hsz/bpc/*.txt*/
 {
  printf("Cannot open file strike any key exit!");
  getch();
  exit(1);
 }

fprintf(fp,"Save the result of “权值”(quanzhi) as follows:/n");
for(i=0;i {
  for(j=0;j  fprintf(fp,"W[%d][%d]=%f/n",i,j,W[i][j]);
 }
fprintf(fp,"/n");
for(ii=0;ii {
  for(jj=0;jj  fprintf(fp,"V[%d][%d]=%f/n",ii,jj,V[ii][jj]);
  }
fclose(fp);
printf("/nThe result of “权值.txt”(quanzhi) has been saved successfully!/nPress any key to continue...");
getch();


if((fp=fopen("f://bp//阈值.txt","a"))==NULL)         /*save the result at f:/hsz/bpc/*/
 {
  printf("Cannot open file strike any key exit!");
  getch();
  exit(1);
 }
fprintf(fp,"Save the result of “输出层的阈值”(huozhi) as follows:/n");
 for(k=0;k   fprintf(fp,"YU_ON[%d]=%f/n",k,YU_ON[k]);

fprintf(fp,"/nSave the result of “隐层的阈值为”(huozhi) as follows:/n");
 for(kk=0;kk  fprintf(fp,"YU_HN[%d]=%f/n",kk,YU_HN[kk]);

fclose(fp);
printf("/nThe result of “阈值.txt”(huozhi) has been saved successfully!/nPress any key to continue...");
getch();
}

/**********************/
/**程序入口,即主程序**/
/**********************/

void main()
{double Pre_error;
double sum_err;
int study;
int flag;
flag=30000;
a=0.7;
b=0.7;
alpha=0.9;
study=0;
Pre_error=0.0001;/*实际值为Pre_error=0.0001;*/

Start_Show();
GetTrainingData();
initial();

do
 {int m;
  ++study;
  for(m=0;m   {
    input_P(m);
    input_T(m);
    H_I_O();
    O_I_O();
    Err_O_H(m);
    Err_H_I();
    saveWV(m);           /****************/
    Delta_O_H(m);                             /*(m,study)*/
    Delta_H_I(m);                              /*(m,study)*/
   }
  sum_err=Err_Sum();
  printf("sum_err=%f/n",sum_err);
  printf("Pre_error=%f/n/n",Pre_error);

  if(study>flag)
   {
    printf("/n*******************************/n");
    printf("The program is ended by itself because of error!/nThe learning times is surpassed!/n");
    printf("*****************************/n");
    getch();
    break;
   }

 }while (sum_err>Pre_error);

printf("/n****************/n");
printf("/nThe program have studyed for [%d] times!/n",study);
printf("/n****************/n");
savequan();        /*save the results*/
End_Show();
}

==========================


权值.txt

{Save the result of “权值”(quanzhi) as follows:
W[0][0]=0.350578
W[0][1]=-1.008697
W[0][2]=-0.962250
W[1][0]=0.055661
W[1][1]=-0.372367
W[1][2]=-0.890795
W[2][0]=0.129752
W[2][1]=-0.332591
W[2][2]=-0.521561

V[0][0]=-2.932654
V[0][1]=-3.720583
V[0][2]=-2.648183
V[1][0]=2.938970
V[1][1]=1.633281
V[1][2]=1.944077

}

阈值.txt

{Save the result of “输出层的阈值”(huozhi) as follows:
YU_ON[0]=-4.226843
YU_ON[1]=1.501791

Save the result of “隐层的阈值为”(huozhi) as follows:
YU_HN[0]=-0.431459
YU_HN[1]=0.452127
YU_HN[2]=0.258449

}

==================================

以上程序为VC++的程序改制而成!

欢迎提宝贵意见!

欢迎交流学习经验!

 

from  http://hshu.bokee.com/4806075.html

举报

相关文章推荐

BP神经网络算法实现

//BP神经网络算法实现 #include #include #include #include #define nh 3 /*输入层*/ #define ni 4 /*隐层*/ ...

BP神经网络算法实现

//BP神经网络算法实现 #include #include #include #include #define nh 3 /*输入层*/ #define ni 4...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

Bp网络神经算法

***原型题目在2011年武汉科技大学程序设计大赛,百度文库上有,属于本人上传*** 1、权阵可以手动输入,可以随机产生,也可以选择题目要求矩阵 2、手动设置误差限,学习率,隐藏结点等 3、对结...

神经网络BP算法

十分遗憾要以这样一个四不像的内容作为博客开始的起点,当以后回首往事时,这可能会成为我最不愿接受的一个事实。对于在还不熟悉博客的规范和一些操作前就开始正文我深感抱歉,这篇文章可能在结构上会非常粗糙,但我...

BP神经网络算法

BP神经网络是一种基于有监督的学习,使用非线性可导函数作为传递函数的前馈神经网络。一、模型BP神经网络由输入层、隐含层、输出层组成。训练过程分为网络输入信号正向传播和误差信号反向传播, 按有监督学习方...

BP神经网络算法代码C++

#include "stdio.h" #include "stdlib.h" #include "math.h" #include "time.h" #include "memory.h" #defi...

Bp神经网络+C++实现

0 前言  神经网络在我印象中一直比较神秘,正好最近学习了神经网络,特别是对Bp神经网络有了比较深入的了解,因此,总结以下心得,希望对后来者有所帮助。   神经网络在机器学习中应用比较广泛,比...

BP神经网络算法与实践

神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了。神经网络有很多种:前向传输网络、反向传输网络、递归神经网络、卷积神经网络等。本文介绍基本的反向传输神经网络(Backpropaga...

C++从零实现BP神经网络

BP(backward propogation)神经网络实现过程中的一些学习资料、心得,以及最终的源码实现,力求通俗、易懂

bp神经网络c语言实现

#include "stdio.h" #include "stdlib.h" #include "time.h" #include "math.h" /********************...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)