MySQL批量插入,,SQL插入性能优化

转载 2015年11月21日 20:25:33

这篇文章主要介绍了PHP大批量插入数据库的3种方法和速度对比,3种方法分别使用普通insert语句、insert into语句和事务提交,需要的朋友可以参考下

第一种方法:使用insert into 插入,代码如下:

?
1
2
3
4
5
6
7
$params= array(‘value'=>'50′);
set_time_limit(0);
echodate(“H:i:s”);
for($i=0;$i<2000000;$i++){
$connect_mysql->insert($params);
};
echodate(“H:i:s”);

最后显示为:23:25:05 01:32:05 也就是花了2个小时多!

第二种方法:使用事务提交,批量插入数据库(每隔10W条提交下)最后显示消耗的时间为:22:56:13 23:04:00 ,一共8分13秒  ,代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
echodate(“H:i:s”);
$connect_mysql->query(‘BEGIN');
$params= array(‘value'=>'50′);
for($i=0;$i<2000000;$i++){
$connect_mysql->insert($params);
if($i%100000==0){
$connect_mysql->query(‘COMMIT');
$connect_mysql->query(‘BEGIN');
}
}
$connect_mysql->query(‘COMMIT');
echodate(“H:i:s”);

第三种方法:使用优化SQL语句:将SQL语句进行拼接,使用 insert into table () values  (),(),(),()然后再一次性插入,如果字符串太长,

则需要配置下MYSQL,在mysql 命令行中运行 :set global max_allowed_packet =  2*1024*1024*10;消耗时间为:11:24:06 11:25:06;

插入200W条测试数据仅仅用了1分钟!代码如下:

?
1
2
3
4
5
6
$sql= “insert into twenty_million (value) values”;
for($i=0;$i<2000000;$i++){
$sql.=”('50′),”;
};
$sql= substr($sql,0,strlen($sql)-1);
$connect_mysql->query($sql);

最后总结下,在插入大批量数据时,第一种方法无疑是最差劲的,而第二种方法在实际应用中就比较广泛,第三种方法在插入测试数据或者其他低要求时比较合适,速度确实快。

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

 对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,可能每天花费在数据导入上的时间就会长达几个小时之久。因此,优化数据库插入性能是很有意义的。

       网络上的牛人很多,总会有一些手段可以提高insert效率,大家跟我一起分享一下吧:

       1. 一条SQL语句插入多条数据。
       我们常用的插入语句大都是一条一个insert,如:

  1. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  2.     VALUES ('0''userid_0''content_0', 0);  
  3. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  4.     VALUES ('1''userid_1''content_1', 1);  
       现在我们将它修改成:

  1. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  2.     VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1);  

       【数据对比】

       下面是网上牛人提供一些测试对比数据,分别是进行单条数据的导入与转化成一条SQL语句进行导入,分别测试1百、1千、1万条数据记录。通过对比,可以发现修改后的插入操作能够提高程序的插入效率。


       【缘由分析】
        这里第二种SQL执行效率高的主要原因是合并后日志量(MySQL的binlog和innodb的事务让日志)减少了,降低日志刷盘的数据量和频率,从而提高效率。通过合并SQL语句,同时也能减少SQL语句解析的次数,减少网络传输的IO。

       2. 在事务中进行插入处理。
       在操作数据的时候,事务也是很常用的。现在我们把上面的插入语句修改成:

  1. START TRANSACTION;  
  2. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  3.     VALUES ('0''userid_0''content_0', 0);  
  4. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  5.     VALUES ('1''userid_1''content_1', 1);  
  6. ...  
  7. COMMIT;  

       【数据对比

        这里也提供了测试对比,分别是不使用事务与使用事务在记录数为1百、1千、1万的情况。亦发现数据的插入效率提高了。


       【缘由分析】

        这是因为进行一个INSERT操作时,MySQL内部会建立一个事务,在事务内才进行真正插入处理操作。通过使用事务可以减少创建事务的消耗,所有插入都在执行后才进行提交操作。


       3. 数据有序插入。

       数据有序的插入是指插入记录在主键上是有序排列,例如datetime是记录的主键:

       原始插入语句如下:

  1. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  2.     VALUES ('1''userid_1''content_1', 1);  
  3. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  4.     VALUES ('0''userid_0''content_0', 0);  
  5. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  6.     VALUES ('2''userid_2''content_2',2);  
       修改成:

  1. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  2.     VALUES ('0''userid_0''content_0', 0);  
  3. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  4.     VALUES ('1''userid_1''content_1', 1);  
  5. INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`)   
  6.     VALUES ('2''userid_2''content_2',2);  

       【数据对比】

        下面提供随机数据与顺序数据的性能对比,分别是记录为1百、1千、1万、10万、100万。从测试结果来看,该优化方法的性能有所提高,但是提高并不是很明显。


       【缘由分析】
        由于数据库插入时,需要维护索引数据,无序的记录会增大维护索引的成本。我们可以参照innodb使用的B+Tree 索引,如果每次插入记录都在索引的最后面,索引的定位效率很高,并且对索引调整较小;如果插入的记录在索引中间,需要B+tree进行分裂合并等处理,会消耗比较多计算资源,并且插入记录的索引定位效率会下降,数据量较大时会有频繁的磁盘操作。


       性能综合测试
       这里提供了同时使用上面三种方法进行INSERT效率优化的测试。


       从测试结果可以看到,合并数据+事务的方法在较小数据量时,性能提高是很明显的,数据量较大时(1千万以上),性能会急剧下降,这是由于此时数据量超过了innodb_buffer的容量,每次定位索引涉及较多的磁盘读写操作,性能下降较快。而使用合并数据+事务+有序数据的方式在数据量达到千万级以上表现依旧是良好,在数据量较大时,有序数据索引定位较为方便,不需要频繁对磁盘进行读写操作,所以可以维持较高的性能。

       注意事项:

    • SQL语句是有长度限制,在进行数据合并在同一SQL中务必不能超过SQL长度限制,通过max_allowed_packet配置可以修改,默认是1M,测试时修改为8M。
    • 事务需要控制大小,事务太大可能会影响执行的效率。MySQL有innodb_log_buffer_size配置项,超过这个值会把innodb的数据刷到磁盘中,这时,效率会有所下降。所以比较好的做法是,在数据达到这个这个值前进行事务提交。

相关文章推荐

MySQL批量sql插入性能优化

MySQL批量SQL插入性能优化 对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,可能每天花费在数据导入上的时间就会长...
  • hephec
  • hephec
  • 2014年09月11日 20:16
  • 381

MySQL批量SQL插入性能优化

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,可能每天花费在数据导入上的时间就会长达几个小时之久。因此,优化数据库插入性能是很有意义的。  ...

MySQL批量SQL插入性能优化

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。...

MySQL批量SQL插入各种性能优化

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。...

MySQL批量SQL插入性能优化

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。...

MySql使用全记录6 -----MySQL批量SQL插入性能优化

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。...

MySQL批量插入性能优化

原文位于:http://database.51cto.com/art/201309/411050.htm 对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报...

MySQL实现批量插入以优化性能的教程

对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。...

MySQL批量插入性能优化(二)

测试的方案: 执行10万次Insert语句,使用不同方式。   A组:静态SQL,自动提交,没事务控制(MyISAM引擎) 1、逐条执行10万次 2、分批执行将10万分成m批,每批n条,分多...
  • wwd0501
  • wwd0501
  • 2015年04月15日 11:02
  • 1326

MySQL批量插入性能优化(一)

MySQL批量SQL插入性能优化 对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因...
  • wwd0501
  • wwd0501
  • 2015年04月15日 10:50
  • 1648
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:MySQL批量插入,,SQL插入性能优化
举报原因:
原因补充:

(最多只允许输入30个字)