Hadoop Streaming 实战: 输出文件分割

转载 2012年03月26日 13:10:21
我们知道,Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'\t’之前的部分作为key,其余内容作为value,如果没有'\t’分隔符,则整行作为key;这个key/tvalue对又作为reduce的输入。hadoop 提供配置供用户自主设置分隔符。 
      -D stream.map.output.field.separator :设置map输出中key和value的分隔符 
      -D stream.num.map.output.key.fields :  设置map程序分隔符的位置,该位置之前的部分作为key,之后的部分作为value 
      -D map.output.key.field.separator : 设置map输出中key内部的分割符
      -D num.key.fields.for.partition : 指定分桶时,key按照分隔符切割后,其中用于分桶key所占的列数(配合-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner 使用)
      -D stream.reduce.output.field.separator:设置reduce输出中key和value的分隔符 
      -D stream.num.reduce.output.key.fields:设置reduce程序分隔符的位置

      实例: 

      1. 编写map程序mapper.sh;reduce程序reducer.sh; 测试数据test.txt

mapper.sh:
#!/bin/sh
cat

reducer.sh:
#!/bin/sh
sort

test.txt内容:
1,2,1,1,1
1,2,2,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1
1,2,3,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1

2.  test.txt放入hadoop,两种方式运行 
           1)无分隔符设置运行

$ hadoop fs -put test.txt /app/test/
$ hadoop streaming -input /app/test/test.txt /
	-output /app/test/test_result /
	-mapper ./mapper.sh -reducer ./reducer.sh 
	-file mapper.sh -file reducer.sh /
	-jobconf mapred.reduce.tasks=2 /
	-jobconf mapre.job.name="sep_test"
$ hadoop fs –cat /app/test/test_result/part-00000
    1,2,2,1,1
    1,3,1,1,1
    1,3,1,1,1
    1,3,3,1,1
    1,3,3,1,1
$ hadoop fs –cat /app/test/test_result/part-00001
    1,2,1,1,1
    1,2,3,1,1
    1,3,2,1,1
    1,3,2,1,1

2)设置分隔符运行

$ hadoop streaming -D stream.reduce.output.field.separator=, 
        -D stream.num.reduce.output.key.fields=2 
         -input /app/test/test.txt
        -output /app/test/test_result_1 
        -mapper ./mapper.sh -reducer ./reducer.sh     
        -file mapper.sh   -file reducer.sh 
        -jobconf mapred.reduce.tasks=2 
        -jobconf mapre.job.name="sep_test"
$ hadoop fs -cat /app/test/test_result_1/part-00000
    1,2     1,1,1
    1,2     2,1,1
    1,2     3,1,1
$ hadoop fs -cat /app/test/test_result_1/part-00001
    1,3     1,1,1
    1,3     1,1,1
    1,3     2,1,1
    1,3     2,1,1
    1,3     3,1,1
    1,3     3,1,1

相关文章推荐

hadoop streaming 按字段排序与输出分割详解

1.默认情况在hadoop streaming的默认情况下,是以”\t”作为分隔符的。对于标准输入来说,每行的第一个”\t” 以前的部分为key,其他部分为对应的value。如果一个”\t”字符没有,...

[备注]haoop streaming常用的一些命令

工作了一段时间之后xi

hadoop stream 参数详解

原文地址:streaming">Hadoop streaming作者:tivoli_chen 1 hadoop streaming Hadoop streaming是和hadoop一起发布的实...
  • azhao_dn
  • azhao_dn
  • 2012年02月24日 14:50
  • 22641

MapReduce如何使用多路输出

Streaming支持多路输出(SuffixMultipleTextOutputFormat) 如下示例: hadoop streaming \ -input /home/mr/data/tes...

Hadoop Streaming 实战: 多路输出

streaming把reduce的输出作为一个任务的最终输出,输出文件形如:        part-00000、part-00001……        文件个数为reduce任务个数  但...

Hadoop Streaming入门

说明:本文使用的Hadoop版本是2.6.0,示例语言用Python。 概述 Hadoop Streaming是Hadoop提供的一种编程工具,提供了一种非常灵活的编程接口, 允许用户使用...

Hadoop Streaming 实战: 多路输出

streaming把reduce的输出作为一个任务的最终输出,输出文件形如:        part-00000、part-00001……        文件个数为reduce任务个数  但...

Hadoop streaming mapreduce多文件输入使用方法

写Mapreduce程序时,常常会有同时处理多个输入文件的的需求,那么如何在map程序中方便的知道这一条record到底来自哪个文件呢?如果数据源是可控的,我们尚可以通过字段的个数等来判断,然而这不是...

hadoop---自定义输出文件格式以及输出到不同目录

转自: hadoop编程小技巧(7)---自定义输出文件格式以及输出到不同目录,保存在此以学习。 代码测试环境:Hadoop2.4 应用场景:当需要定制输出数据格式时可以采用此技巧,包括定制输出数...

hadoop streaming 输出数据分割与二次排序

输出数据分割 默认情况下Streaming框架将map输出的每一行第一个”\t”之前的部分作为key,之后的部分作为value,key\tvalue又作为reduce的输入。可以用-D stre...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hadoop Streaming 实战: 输出文件分割
举报原因:
原因补充:

(最多只允许输入30个字)