Hadoop Streaming 实战: 输出文件分割

转载 2012年03月26日 13:10:21
我们知道,Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'\t’之前的部分作为key,其余内容作为value,如果没有'\t’分隔符,则整行作为key;这个key/tvalue对又作为reduce的输入。hadoop 提供配置供用户自主设置分隔符。 
      -D stream.map.output.field.separator :设置map输出中key和value的分隔符 
      -D stream.num.map.output.key.fields :  设置map程序分隔符的位置,该位置之前的部分作为key,之后的部分作为value 
      -D map.output.key.field.separator : 设置map输出中key内部的分割符
      -D num.key.fields.for.partition : 指定分桶时,key按照分隔符切割后,其中用于分桶key所占的列数(配合-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner 使用)
      -D stream.reduce.output.field.separator:设置reduce输出中key和value的分隔符 
      -D stream.num.reduce.output.key.fields:设置reduce程序分隔符的位置

      实例: 

      1. 编写map程序mapper.sh;reduce程序reducer.sh; 测试数据test.txt

mapper.sh:
#!/bin/sh
cat

reducer.sh:
#!/bin/sh
sort

test.txt内容:
1,2,1,1,1
1,2,2,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1
1,2,3,1,1
1,3,1,1,1
1,3,2,1,1
1,3,3,1,1

2.  test.txt放入hadoop,两种方式运行 
           1)无分隔符设置运行

$ hadoop fs -put test.txt /app/test/
$ hadoop streaming -input /app/test/test.txt /
	-output /app/test/test_result /
	-mapper ./mapper.sh -reducer ./reducer.sh 
	-file mapper.sh -file reducer.sh /
	-jobconf mapred.reduce.tasks=2 /
	-jobconf mapre.job.name="sep_test"
$ hadoop fs –cat /app/test/test_result/part-00000
    1,2,2,1,1
    1,3,1,1,1
    1,3,1,1,1
    1,3,3,1,1
    1,3,3,1,1
$ hadoop fs –cat /app/test/test_result/part-00001
    1,2,1,1,1
    1,2,3,1,1
    1,3,2,1,1
    1,3,2,1,1

2)设置分隔符运行

$ hadoop streaming -D stream.reduce.output.field.separator=, 
        -D stream.num.reduce.output.key.fields=2 
         -input /app/test/test.txt
        -output /app/test/test_result_1 
        -mapper ./mapper.sh -reducer ./reducer.sh     
        -file mapper.sh   -file reducer.sh 
        -jobconf mapred.reduce.tasks=2 
        -jobconf mapre.job.name="sep_test"
$ hadoop fs -cat /app/test/test_result_1/part-00000
    1,2     1,1,1
    1,2     2,1,1
    1,2     3,1,1
$ hadoop fs -cat /app/test/test_result_1/part-00001
    1,3     1,1,1
    1,3     1,1,1
    1,3     2,1,1
    1,3     2,1,1
    1,3     3,1,1
    1,3     3,1,1

以文件的某一域分割文件

Hash(){ if [ "$#" -ne "1" ]; then echo "Hash Wrong Paramenters!" >&2 return 1 fi read st...
  • sptoor
  • sptoor
  • 2011年09月09日 15:50
  • 557

Hadoop 之 文件切分算法

文件切分算法主要用于确定 InputSplit 的个数,以及每个 InputSplit 对应的数据段。FileInputFormat 以文件为单位切分生成 InputSplit。对于新旧 MapRed...
  • andrewgb
  • andrewgb
  • 2016年02月02日 22:32
  • 1573

Hadoop:HDFS数据存储与切分

Hadoop入门教程:HDFS数据存储与切分,在Hadoop中数据的存储是由HDFS负责的,HDFS是Hadoop分布式计算的存储基石,Hadoop的分布式文件系统和其他分布式文件系统有很多类似的特质...
  • oraclestudyroad
  • oraclestudyroad
  • 2016年07月22日 09:19
  • 2918

Hadoop Streaming 实战: 输出文件分割

我们知道,Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'/t’之前的部分作为key,其余内容作为value,如果没有'/t’分隔符,则整行作为key;这个key/...
  • u010080235
  • u010080235
  • 2013年12月20日 15:24
  • 1088

Hadoop Streaming 输出文件分割

Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'/t’之前的部分作为key,其余内容作为value,如果没有'/t’分隔符,则整行作为key;这个key/tvalu...
  • zqxnum1
  • zqxnum1
  • 2017年06月06日 13:29
  • 148

Hadoop中合并小文件

问题? 每一个比block size小的文件都会消耗掉一个完整block的分配,但是磁盘空间的实际占用是基于文件的大小,而不要误认为小文件会消耗掉一整个块的存储空间。 每个块都会消耗Nam...
  • asdfzjs
  • asdfzjs
  • 2015年09月01日 16:15
  • 2998

Hadoop Streaming 实战: 输出文件分割

我们知道,Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'\t’之前的部分作为key,其余内容作为value,如果没有'\t’分隔符,则整行作为key;这个key/...
  • jiedushi
  • jiedushi
  • 2012年03月26日 13:10
  • 4715

hadoop streaming 多路输出

hadoop streaming工具很好的支持python 等各种脚本语言的map-reduce程序,开发方便高效,但是它没有直接支持多路输出(或者由于自己孤陋寡闻不知道),所以自己实现了一个多路输出...
  • lmc_wy
  • lmc_wy
  • 2012年05月03日 17:24
  • 3210

【Python学习系列四】Python程序通过hadoop-streaming提交到Hadoop集群执行MapReduce

场景:将Python程序通过hadoop-streaming提交到Hadoop集群执行。 参考:http://www.michael-noll.com/tutorials/writing-an-ha...
  • fjssharpsword
  • fjssharpsword
  • 2017年06月07日 15:55
  • 2408

Hadoop-2.4.1源码分析--MapReduce作业切片(Split)过程

在上一篇文章《Hadoop源码分析--MapReduce作业(job)提交源码跟踪》中,我介绍了Job的提交过程源码,介绍的最后一个方法是submitJobInternal(Jobjob, Clus...
  • u010010428
  • u010010428
  • 2016年05月21日 16:43
  • 1994
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hadoop Streaming 实战: 输出文件分割
举报原因:
原因补充:

(最多只允许输入30个字)