关闭

HomeWork——Next Permutation

标签: C++泛型stl算法string
88人阅读 评论(0) 收藏 举报
分类:

Permutation是排列组合的意思,这道题的表述十分简单,就是输入下一个排列组合(next permutation)比如说长度为3的permutation,则有六种情况:

0,1,2

0,2,1

1,0,2

1,2,0

2,0,1

2,1,0

题目就是要求在输入一个permutation的情况下,输出字典序下的下一个permutation或者上一个permutation。

最简单的方法则是使用STL中的泛型算法,调用<algorithm>库函数则可以AC掉这道题。

可是单纯是这样是学不到东西的,所以这篇博客是用于介绍STL中的next_permutation和prev_permutation的内部算法


STL文档中next_permutation函数将按字母表顺序生成给定序列的下一个较大排列,直到整个序列为第一个最小的序列,就是将序序列为止。而prev_permutation就与之相反。

首先,我们要给序列的大小比较给出一个cmp函数或者说是规则:

如果有两个相同长度的序列,从两者的第一个元素开始往后寻找,直到出现第一个不同的元素,这两个元素较大的一个就表示这个序列为大,反之则是这个序列为小。如果直到最后一个元素比较之后都没有找到,则说明这两个序列的是相等序列。

我们知道将一个集合内的数字排成一个序列,最大的序列是这些数字的减序,而最小的序列式这些数字的增序。给定一个序列p,如何才能生成它的下一个序列p+1,即不存在px使得p < px < p+1成立。

假设一个有m个元素的序列pn,下一个比他大的序列为pn+1,如果pn的最后的2个元素构成了最小的增序子集,由于前m-2个元素都是相同的,且2个元素构成的序列只有2钟,故直接反转这2个元素就可以得到pn+1。而如果pn最后至多有s个元素构成一个减序子集,我们令i = m - s,则有pn(i) < pn(i+1),因此若将这两个元素交换必然能得到一个较大的序列,但这可能并不是next_permutation。因此必须保持pn(i)之前的元素不变,并在子集pn(i+1)直到pn(m)中找到一个仅仅比pn(i)大的元素pn(j),子集中可能有很多比pn(i)大的元素,但只需要找一个最小的即可。将这两个元素交换位置,此时只要将得到新的子集生产一个最小排列即可,即将其反转得到一个升序即可。这样我们就可以得到pn+1了。

通俗的讲,就是找到一个后缀,当然这个后缀可以包括整个序列pn本身,且这个后缀中第一个元素不是最大的元素,找到一个这样的最短的后缀,然后将后缀中的第一个元素和这个后缀的第二大的元素调换位置,剩下的元素进行一个升序排列即可得到pn+1。


prev_permutation的非STL算法也是与上述算法类似,只是顺序相反。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:340次
    • 积分:41
    • 等级:
    • 排名:千里之外
    • 原创:4篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档