关闭

1779: 算法10-10,10-11:堆排序

111人阅读 评论(0) 收藏 举报
分类:

题目描述

堆排序是一种利用堆结构进行排序的方法,它只需要一个记录大小的辅助空间,每个待排序的记录仅需要占用一个存储空间。
首先建立小根堆或大根堆,然后通过利用堆的性质即堆顶的元素是最小或最大值,从而依次得出每一个元素的位置。
堆排序的算法可以描述如下:
在本题中,读入一串整数,将其使用以上描述的堆排序的方法从小到大排序,并输出。

输入

输入的第一行包含1个正整数n,表示共有n个整数需要参与排序。其中n不超过100000。
第二行包含n个用空格隔开的正整数,表示n个需要排序的整数。

输出

只有1行,包含n个整数,表示从小到大排序完毕的所有整数。
请在每个整数后输出一个空格,并请注意行尾输出换行。

样例输入

10
2 8 4 6 1 10 7 3 5 9

样例输出

1 2 3 4 5 6 7 8 9 10 

提示

在本题中,需要按照题目描述中的算法完成堆排序的算法。

堆排序对于元素数较多的情况是非常有效的。通过对算法的分析,不难发现在建立含有n个元素的堆时,总共进行的关键字比较次数不会超过4n,且n个节点的堆深度是log2n数量级的。因此,堆排序在最坏情况下的时间复杂度是O(nlog2n),相对于快速排序,堆排序具有同样的时间复杂度级别,但是其不会退化。堆排序较快速排序的劣势是其常数相对较大。
program p1779;
type
 arr=array[1..100000]of longint;
var a:arr;
i,n:longint;
procedure sift(var a:arr;l,m:longint);
var i,j,t:longint;
begin
i:=l;j:=2*i;t:=a[i];
while j<=m do
 begin
  if (j<m) and(a[j]>a[j+1]) then j:=j+1;
  if t>a[j] then
  begin
   a[i]:=a[j];i:=j;j:=2*i;
  end
   else exit;

a[i]:=t;
end;

end;
begin
readln(n);
for i:=1 to n do read(a[i]);
for i:=(n div 2) downto 1 do
  sift(a,i,n);
for i:=n downto 2 do
  begin
  write(a[1],' ');
  a[1]:=a[i];
  sift(a,1,i-1);
  end;
  writeln(a[1],' ');
end.

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:16151次
    • 积分:118
    • 等级:
    • 排名:千里之外
    • 原创:91篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档