关闭

26935: 笛卡尔树

264人阅读 评论(0) 收藏 举报
分类:

题目描述

【问题描述】
      笛卡尔树(Cartesian Tree)是一种特殊的二叉搜索树。让我们复习一下:二叉搜索树是一颗有根二叉树,并且对于每个结点x都满足:它左子树中的任何结点的权值都小于x的权值,它右子树中任何结点的权值都大于x的权值。让我们形式化定义:假设x的左子树为L(x),x的右子树为R(x),x的权值为k(x)。则一颗满足如下条件的二叉树称为二叉搜索树:
     如果点y在L(x)中,则k(y)<k(x);如果点z在R(x)中,则k(z)>k(x)。
     一颗二叉搜索树称为笛卡尔树,当且仅当我们给每个点都附加一个权值a(x),且每个点的a权值都严格小于它左右子树中的点的a权值。也就是说:如果点y是x的父亲,则a(y)<a(x)。
     因此,一颗笛卡尔树就是一颗二叉树,对于每个结点有两个权值(k,a),且满足上面三条性质。
     给定一个点,请你构造出一颗笛卡尔树。

输入

第一行是一个整数n(1=<n<=50000),表示给定结点的个数。
接下来n行,每行两个整数k(i),a(i),表示点i的两个权值。题目保证同类权值不出现重复,也就是说对于任意i<>j,一定有k(i)<>k(j),且a(i)<>a(j)。权值都是不超过50000的正整数。

输出

第一行输出解的情况。如果可以构造出一颗笛卡尔树,输出"yes",否则输出"no"。
如果可以构造,那么接下来输出n行,每行3个整数,分别表示第i个结点的父亲、左儿子、右儿子的编号。顶点编号都是从1到n的,0表示空。顶点的输出顺序与输入顺序一致。

样例输入

7 5 4 2 2 3 9 0 5 1 3 6 6 4 11

样例输出

yes 2 3 6 0 5 1 1 0 7 5 0 0 2 4 0 1 0 0 3 0 0
program pdikaer; var n:longint; a:array[0..50000+1,1..3]of longint; f:array[0..16]of longint; mi:array[0..50000+1,0..16,1..2]of longint; o:array[0..50000+1,1..3]of longint; procedure init; var i:longint; begin f[0]:=1; for i:=1 to 16 do f[i]:=f[i-1]*2; read(n); for i:=1 to n do begin read(a[i,1],a[i,2]); a[i,3]:=i; end; end; procedure qsort(l,r:longint); var i,j,k:longint; begin if l>=r then exit; i:=l; j:=r; k:=a[(l+r) div 2,1]; while i<j do begin while a[i,1]<k do inc(i); while a[j,1]>k do dec(j); if i<=j then begin a[0]:=a[i]; a[i]:=a[j]; a[j]:=a[0]; inc(i); dec(j); end; end; qsort(l,j); qsort(i,r); end; procedure dfs(l,r:longint); var i,t,ft,lt,rt,x:longint; begin if r<=l then exit; t:=trunc(ln(r-l+1)/ln(2)); if mi[l,t,1]<mi[r-f[t]+1,t,1] then x:=mi[l,t,2] else x:=mi[r-f[t]+1,t,2]; ft:=a[x,3]; lt:=0; if l<>x then begin t:=trunc(ln(x-l)/ln(2)); if mi[l,t,1]<mi[x-f[t],t,1] then lt:=a[mi[l,t,2],3] else lt:=a[mi[x-f[t],t,2],3]; end; rt:=0; if r<>x then begin t:=trunc(ln(r-x)/ln(2)); if mi[x+1,t,1]<mi[r-f[t]+1,t,1] then rt:=a[mi[x+1,t,2],3] else rt:=a[mi[r-f[t]+1,t,2],3]; end; o[ft,2]:=lt; o[ft,3]:=rt; o[lt,1]:=ft; o[rt,1]:=ft; dfs(l,x-1); dfs(x+1,r); end; procedure main; var i,b,t:longint; begin for i:=1 to n do mi[i,0,1]:=a[i,2]; for i:=1 to n do mi[i,0,2]:=i; for t:=1 to trunc(ln(n)/ln(2)) do for b:=1 to n-f[t]+1 do if mi[b,t-1,1]>mi[b+f[t-1],t-1,1] then mi[b,t]:=mi[b+f[t-1],t-1] else mi[b,t]:=mi[b,t-1]; dfs(1,n); end; procedure print; var i:longint; begin writeln('yes'); for i:=1 to n do writeln(o[i,1],' ',o[i,2],' ',o[i,3]); end; begin init; qsort(1,n); main; print; end.

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:16158次
    • 积分:118
    • 等级:
    • 排名:千里之外
    • 原创:91篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档