26935: 笛卡尔树

原创 2015年07月10日 09:46:21

题目描述

【问题描述】
      笛卡尔树(Cartesian Tree)是一种特殊的二叉搜索树。让我们复习一下:二叉搜索树是一颗有根二叉树,并且对于每个结点x都满足:它左子树中的任何结点的权值都小于x的权值,它右子树中任何结点的权值都大于x的权值。让我们形式化定义:假设x的左子树为L(x),x的右子树为R(x),x的权值为k(x)。则一颗满足如下条件的二叉树称为二叉搜索树:
     如果点y在L(x)中,则k(y)<k(x);如果点z在R(x)中,则k(z)>k(x)。
     一颗二叉搜索树称为笛卡尔树,当且仅当我们给每个点都附加一个权值a(x),且每个点的a权值都严格小于它左右子树中的点的a权值。也就是说:如果点y是x的父亲,则a(y)<a(x)。
     因此,一颗笛卡尔树就是一颗二叉树,对于每个结点有两个权值(k,a),且满足上面三条性质。
     给定一个点,请你构造出一颗笛卡尔树。

输入

第一行是一个整数n(1=<n<=50000),表示给定结点的个数。
接下来n行,每行两个整数k(i),a(i),表示点i的两个权值。题目保证同类权值不出现重复,也就是说对于任意i<>j,一定有k(i)<>k(j),且a(i)<>a(j)。权值都是不超过50000的正整数。

输出

第一行输出解的情况。如果可以构造出一颗笛卡尔树,输出"yes",否则输出"no"。
如果可以构造,那么接下来输出n行,每行3个整数,分别表示第i个结点的父亲、左儿子、右儿子的编号。顶点编号都是从1到n的,0表示空。顶点的输出顺序与输入顺序一致。

样例输入

7 5 4 2 2 3 9 0 5 1 3 6 6 4 11

样例输出

yes 2 3 6 0 5 1 1 0 7 5 0 0 2 4 0 1 0 0 3 0 0
program pdikaer; var n:longint; a:array[0..50000+1,1..3]of longint; f:array[0..16]of longint; mi:array[0..50000+1,0..16,1..2]of longint; o:array[0..50000+1,1..3]of longint; procedure init; var i:longint; begin f[0]:=1; for i:=1 to 16 do f[i]:=f[i-1]*2; read(n); for i:=1 to n do begin read(a[i,1],a[i,2]); a[i,3]:=i; end; end; procedure qsort(l,r:longint); var i,j,k:longint; begin if l>=r then exit; i:=l; j:=r; k:=a[(l+r) div 2,1]; while i<j do begin while a[i,1]<k do inc(i); while a[j,1]>k do dec(j); if i<=j then begin a[0]:=a[i]; a[i]:=a[j]; a[j]:=a[0]; inc(i); dec(j); end; end; qsort(l,j); qsort(i,r); end; procedure dfs(l,r:longint); var i,t,ft,lt,rt,x:longint; begin if r<=l then exit; t:=trunc(ln(r-l+1)/ln(2)); if mi[l,t,1]<mi[r-f[t]+1,t,1] then x:=mi[l,t,2] else x:=mi[r-f[t]+1,t,2]; ft:=a[x,3]; lt:=0; if l<>x then begin t:=trunc(ln(x-l)/ln(2)); if mi[l,t,1]<mi[x-f[t],t,1] then lt:=a[mi[l,t,2],3] else lt:=a[mi[x-f[t],t,2],3]; end; rt:=0; if r<>x then begin t:=trunc(ln(r-x)/ln(2)); if mi[x+1,t,1]<mi[r-f[t]+1,t,1] then rt:=a[mi[x+1,t,2],3] else rt:=a[mi[r-f[t]+1,t,2],3]; end; o[ft,2]:=lt; o[ft,3]:=rt; o[lt,1]:=ft; o[rt,1]:=ft; dfs(l,x-1); dfs(x+1,r); end; procedure main; var i,b,t:longint; begin for i:=1 to n do mi[i,0,1]:=a[i,2]; for i:=1 to n do mi[i,0,2]:=i; for t:=1 to trunc(ln(n)/ln(2)) do for b:=1 to n-f[t]+1 do if mi[b,t-1,1]>mi[b+f[t-1],t-1,1] then mi[b,t]:=mi[b+f[t-1],t-1] else mi[b,t]:=mi[b,t-1]; dfs(1,n); end; procedure print; var i:longint; begin writeln('yes'); for i:=1 to n do writeln(o[i,1],' ',o[i,2],' ',o[i,3]); end; begin init; qsort(1,n); main; print; end.

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 2796 Feel Good 单调栈或者笛卡尔树

题目:http://poj.org/problem?id=2796题意:给定一个长度为nn的数组,一个区间的值为这个区间的中所有值的和与最小值的乘积,求区间的最大值,并输出区间的左右端点思路:明显的单...

poj1785&zoj2243 Binary Search Heap Construction(笛卡尔树)

Binary Search Heap Construction Time Limit: 5 Seconds      Memory Limit: 32768 KB Read the stateme...

【pushing my way】笛卡尔树

其实这个是因为有点懒不想自己写= = 笛卡尔树又称笛卡儿树,在数据结构中属于二叉树的一种。 笛卡尔树结构由Vuillmin在解决范围搜索的几何数据结构问题时提出的,从数列中构造一棵笛卡尔树...
  • BPM136
  • BPM136
  • 2015年08月27日 11:51
  • 408

pat-笛卡尔树

pat-笛卡尔树

2017多校训练赛第一场 HDU 6044 Limited Permutation(虚建笛卡尔树+超级读入挂)

还是一样,读题很重要……         本题的破题关键点在于区间满足的条件:if and only if(当且仅当)。所以说,对于一个数字i,它是区间[li,ri]的最小值,这个li和ri不能扩大或...

POJ 1785 Binary Search Heap Construction 笛卡尔树

Binary Search Heap Construction Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 9...

hdu4095 Very Boring Homework(笛卡尔树+模拟)

题目请戳这里 题目大意:给一个数字序列1-n,按输入次序建一颗BST,然后按照题目描述,输出任意给定矩形的树。给了5条描述,感觉很复杂的样子,然后看这样例自己yy了一下,就那么回事吧。设树高d,n个...

poj2796Feel Good(笛卡尔树)

题目请戳这里 题目大意:给n个数,求一个区间,使这个区间数字之和*这个区间最小值最大,给出这个最大值以及这个区间左右端点。 题目分析:笛卡尔树。先按输入建一颗小堆笛卡尔树,然后dfs遍历一遍,直接...

poj 2201 笛卡尔树

#include #include #include #include #include #include #include #include #include #include #include #...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:26935: 笛卡尔树
举报原因:
原因补充:

(最多只允许输入30个字)