关闭

1765: 算法7-9:最小生成树

372人阅读 评论(0) 收藏 举报
分类:

题目描述

最小生成树问题是实际生产生活中十分重要的一类问题。假设需要在n个城市之间建立通信联络网,则连通n个城市只需要n-1条线路。这时,自然需要考虑这样一个问题,即如何在最节省经费的前提下建立这个通信网。
可以用连通网来表示n个城市以及n个城市之间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋于边的权值表示相应的代价。对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。现在,需要选择一棵生成树,使总的耗费最小。这个问题就是构造连通网的最小代价生成树,简称最小生成树。一棵生成树的代价就是树上各边的代价之和。
而在常用的最小生成树构造算法中,普里姆(Prim)算法是一种非常常用的算法。以下是其算法的大致结构:
在本题中,读入一个无向图的邻接矩阵(即数组表示),建立无向图并按照以上描述中的算法建立最小生成树,并输出最小生成树的代价。

输入

输入的第一行包含一个正整数n,表示图中共有n个顶点。其中n不超过50。
以后的n行中每行有n个用空格隔开的整数,对于第i行的第j个整数,如果不为0,则表示第i个顶点和第j个顶点有直接连接且代价为相应的值,0表示没有直接连接。当i和j相等的时候,保证对应的整数为0。
输入保证邻接矩阵为对称矩阵,即输入的图一定是无向图,且保证图中只有一个连通分量。

输出

只有一个整数,即最小生成树的总代价。请注意行尾输出换行。

样例输入

4
0 2 4 0
2 0 3 5
4 3 0 1
0 5 1 0

样例输出

6

提示

在本题中,需要掌握图的深度优先遍历的方法,并需要掌握无向图的连通性问题的本质。通过求出无向图的连通分量和对应的生成树,应该能够对图的连通性建立更加直观和清晰的概念。
program p1765;
var cost:array[1..50,1..50]of longint;
    mincost,closed:array[1..50]of longint;
    min,k,i,j,n,x,y,sum:longint;
begin
 readln(n);
 for i:=1 to n do
  for j:=1 to n do
   begin
    read(cost[i,j]);
    if(i<>j) and(cost[i,j]=0)then cost[i,j]:=maxint;
    end;
    sum:=0;
  for i:=1 to n do
   begin
    mincost[i]:=cost[1,i];
    closed[i]:=1;
   end;
 for i:=2 to n do
  begin
   min:=maxint;
   for j:=1 to n do
    if(mincost[j]<min)and(mincost[j]<>0)then
    begin
     min:=mincost[j];
     k:=j;
     end;
      sum:=sum+min;
    mincost[k]:=0;
    for j:=1 to n do
     if(mincost[j]>cost[k,j])and(mincost[j]<>0) then
    begin
     mincost[j]:=cost[k,j];
     closed[j]:=k;
     end;
   end;
 writeln(sum);
end.
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:15167次
    • 积分:108
    • 等级:
    • 排名:千里之外
    • 原创:91篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档