关闭

问题 G: 均分纸牌

200人阅读 评论(0) 收藏 举报
分类:
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
  例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
  移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入

键盘输入文件名。文件格式:
  N(N 堆纸牌,1 <= N <= 100)
  A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出

输出至屏幕。格式为:
  所有堆均达到相等时的最少移动次数。‘

样例输入

4
9 8 17 6

样例输出

3
把所有堆减去平均数,就得到一串有正有负的数字,从左至右把这些数字逐渐累加,如果非零说明要有一次交换(如果过负,说明要从右边拿过来,为正则说明要从左边拿过去,为零则说明前面的交换恰好完成)
var
a:array[1..1000] of longint;
m,i,j,n,s:longint;
begin
 s:=0;
 readln(n);
for i:=1 to n do
 begin
  read(a[i]);
  m:=m+a[i];
 end;
 m:=m div n;
for i:=1 to n do
 a[i]:=a[i]-m;
for i:=2 to n do
 if a[i-1]<>0 then
 begin
   a[i]:=a[i]+a[i-1];
   s:=s+1;
 end;
 writeln(s);
end.
 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:16157次
    • 积分:118
    • 等级:
    • 排名:千里之外
    • 原创:91篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档