noip2014

原创 2015年07月10日 11:31:35

noip2014

珠心算


试题一(count.pas)
【问题描述】
珠心算是一种通过在脑中模拟算盘变化来完成快速运算的一种计算技术。珠心算训练,既能够开发智力,又能够为日常生活带来很多便利,因而在很多学校得到普及。
某学校的珠心算老师采用一种快速考察珠心算加法能力的测验方法。他随机生成一个正
整数集合,集合中的数各不相同,然后要求学生回答:其中有多少个数,恰好等于集合中另外两个(不同的)数之和?

最近老师出了一些测验题,请你帮忙求出答案。
【输入】
输入文件名为count.in。
输入共两行,第一行包含一个整数n,表示测试题中给出的正整数个数。
第二行有n个正整数,每两个正整数之间用一个空格隔开,表示测试题中给出的正整数。
【输出】
输出文件名为count.out。
输出共一行,包含一个整数,表示测验题答案。
【输入输出样例】
count.in count.out
5
1 2 3 4 5 6 4
【样例说明】
由1+2=3,1+3=4,故满足测试要求的答案为2。注意,加数和被加数必须是集合中的两个不同的数。
【数据说明】
对于100%的数据,3 ≤ n ≤ 100,测验题给出的正整数大小不超过10,000。

代码如下

program count;
var
n,i,j,k:integer;
a:array[1..101] of integer; 
b:array[1..101]of boolean;
begin
assign(input,'count.in');
assign(output,'count.out');
reset(input);
rewrite(output); 
 readln(n);
  fillchar(b,sizeof(b),0);
for i:=1 to n do read(a[i]);
 for i:=1 to n do
  for j:=1 to n do
   for k:=j+1 to n do
if a[i]=a[j]+a[k] then b[i]:=true; 
k:=0;
 for i:=1 to n do
  if b[i] then k:=k+1;
writeln(k);
close(input);
close(output);
end.

比例化简


试题2(ratio.pas)
【问题描述】
在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果。例如,对某一观点表示支持的有1498人,反对的有902人,那么赞同与反对的比例可以简单的记为1498:902。
不过,如果把调查结果就以这种方式呈现出来,大多数人肯定不会满意。因为这个比例的数值太大,难以一眼看出它们的关系。对于上面这个例子,如果把比例记为5:3,虽然与真实结果有一定的误差,但依然能够较为准确地反映调查结果,同时也显得比较直观。
现给出支持人数A,反对人数B,以及一个上限L,请你将A比B化简为A’比B’,要求在A’和B’均不大于L且A’和B’互质(两个整数的最大公约数是1)的前提下,
A’/ B’ ≥ A/B且A’/B’- A/B的值尽可能小。
【输入】
输入文件名为ratio.in。
输入共一行,包含三个整数A,B,L,每两个整数之间用一个空格隔开,分别表示支持人数、反对人数以及上限
【输出】
输出文件名为ratio.out
输出共一行,包含两个整数A’,B’,中间用一个空格隔开,表示化简后的比例。
【输入输出样例】

ratio.in ratio.out
1498 902 10 5 3

【数据说明】
对于100%的数据,1 ≤ A ≤ 1,000,000,1 ≤ B ≤ 1,000,000,1 ≤ L ≤ 100,
A/B ≤ L。

代码如下

var
  a,b,l,i,j,mini,minj:longint;
  r1,r2,min:real;
begin
  //assign(input,'ratio.in'); reset(input);
  //assign(output,'ratio.out'); rewrite(output);
  read(a,b,l);
  r1:=a/b;
  min:=maxlongint;
  for i:=1 to l do
    for j:=1 to l do begin
      r2:=i/j;
      if(r2-r1>1e-8)and(r2-r1-min<-(1e-8))then begin
        min:=r2-r1;
        mini:=i;
        minj:=j;
      end;
    end;
  writeln(mini,' ',minj);
  //close(input); close(output)
end.

螺旋矩阵


一个n行n列的螺旋矩阵可由如下方法生成:

从矩阵的左上角(第1行第1列)出发,初始时向右移动;如果前方是未曾经过的格子,则继续前进,否则右转;重复上述操作直至经过矩阵中所有格子。根据经过顺序,在格子中依次真入1,2,3,…,n2,便构成了一个螺旋矩阵。

下图是一个n=4时的螺旋矩阵。

1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7

现给出矩阵大小n以及i和j,请你求出该矩阵中第i行第j列的数是多少。

输入
输入共一行,包含三个整数n,i,j,每两个整数之间用一个空格隔开,分别表示矩阵大小、待求的数所在的行号和列号。

【数据说明】

对于50%的数据,1≤n≤100;

对于100%的数据,1≤n≤30,000,1≤i≤n,1≤j≤n 。

输出
输出共一行,包含一个整数,表示相应矩阵中第i行第j列的数。

样例输入
4 2 3
样例输出
14

代码如下:

program matrix;
var
 n,i,j,tn,s,m,k:longint;
 procedure print(x,y:longint);
 begin
 if x=1 then
 begin
  writeln(s+y-1);
  exit
 end;
 s:=s+tn-1;
 if y=tn then
 begin
  writeln(s+x-1);
  exit
 end;
 s:=s+tn-1;
 if x=tn then
 begin
  writeln(s+tn-y);
  exit
 end;
 s:=s+tn-1;
 writeln(s+tn-x)
 end;
function min(x,y:longint):longint;
 begin
  if x<=y then exit(x) else exit(y)
 end;
begin
//assign(input,'matrix.in'); reset(input);
//assign(output,'matrix.out'); rewrite(output);
readln(n,i,j);
 m:=min(i,min(j,min(n-i+1,n-j+1)));
  i:=i-m+1; j:=j-m+1;
   tn:=n;
    s:=1;
   for k:=1 to m-1 do begin
  inc(s,4*tn-4);
 dec(tn,2)
end;
print(i,j);
//close(input); close(output)
end.
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

NOIP2014初赛提高C

  • 2015-10-17 14:27
  • 460KB
  • 下载

NOIP2014提高组简单题

不包括D1和D2的T3Day1T1UOJ传送门 洛谷传送门一道非常裸的模拟题。。。直接枚举每次猜拳。。。#include #include #include #include #include us...

noip2014普及组复赛试题

  • 2017-08-13 23:09
  • 793KB
  • 下载

#NOIP 2014# day.1 T2 联合权值

题目和数据在评论中给出地址。或者自行在网上搜索,这里就不再给出。第一眼看起来很复杂。 所以我想了个对链、和树不同情况都分别处理的算法。。orz。。复杂度太高最后4组T了。。 所以。。转换思路。。联...

NOIP 2014提高组 联合权值

因为边权为1,所以说,对于一个点,所有与这个点直接连接的点间的距离均为2,对于一个点,设它直接连接的点为 a1,a2,a3 …… 那所求的结果为 a1*(a2 + a3 + …) + a2*(a1 +...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)