机器学习——(一)

原创 2017年01月03日 11:22:48

机器学习不能解决所有问题,例如①并行化计算②大数据存储③造一个机器人

机器学习分类:1.有监督2.无监督3.强化学习

机器学习分类的根本:目标函数=损失函数。

1. min(预测值-真实值)^2;

2. 预测值=θ1x1 + θ2x2 + θ3x3  ,注:x1,x2,x3是特征,θ1,θ2,θ3是参数

EM可以学习正太分布的参数。取得局部最小值,不是全局。







,意义:可以求一个函数的近似值



,也可以使用“两边逼近”定理来计算一个数是多少


概率公式




机器学习——SVM向量支持机

  • 2012年05月22日 12:31
  • 1.52MB
  • 下载

python机器学习案例系列教程——优化,寻找使成本函数最小的最优解

全栈工程师开发手册 (作者:栾鹏) python数据挖掘系列教程 今天来学习变量优化问题。寻找使成本函数最小的题解。适用于题解相互独立的情况,设计随机优化算法、爬山法、模拟退火算法、遗传算...

机器学习基础——降维

  • 2017年03月03日 09:55
  • 2.09MB
  • 下载

【机器学习算法实现】kNN算法__手写识别——基于Python和NumPy函数库

kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算法之一,算法思想很简单:从训练样本集中选择k个与测试样本“距离”最近的样本,这k个样本中出现频率最高的类别即作...

机器学习——核函数讲义

  • 2014年01月08日 10:56
  • 757KB
  • 下载

《用Python构建机器学习》——第十章:计算机视觉-模式识别 读后小结

《Building Machine Learning Systems with Python》(暂译:用Python构建机器学习系统)第十章“计算机视觉:模式识别”的简要笔记。...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习——(一)
举报原因:
原因补充:

(最多只允许输入30个字)