关闭

机器学习——(一)

84人阅读 评论(0) 收藏 举报

机器学习不能解决所有问题,例如①并行化计算②大数据存储③造一个机器人

机器学习分类:1.有监督2.无监督3.强化学习

机器学习分类的根本:目标函数=损失函数。

1. min(预测值-真实值)^2;

2. 预测值=θ1x1 + θ2x2 + θ3x3  ,注:x1,x2,x3是特征,θ1,θ2,θ3是参数

EM可以学习正太分布的参数。取得局部最小值,不是全局。







,意义:可以求一个函数的近似值



,也可以使用“两边逼近”定理来计算一个数是多少


概率公式




0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:14972次
    • 积分:799
    • 等级:
    • 排名:千里之外
    • 原创:59篇
    • 转载:13篇
    • 译文:2篇
    • 评论:3条
    最新评论