关闭
当前搜索:

IForest简介

异常值分析是检验数据是否有录入错误以及含有不合常理的数据的过程,忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响,重视异常值的出现,分析其产生的原因,常常成为发现问题进而改进决策的契机。之前介绍过利用高斯分布进行异常值检测,今天我们来学习另外一种非常有用的IForest算法。 1. IForest思想简介        IFore...
阅读(41) 评论(0)

Bagging与随机森林算法简介

在集成学习中,大致分为两大类:一种是Boosting系列的算法,另一种是Bagging系列的算法。对于Boosting算法而言,它的特点是各个弱学习器之间有依赖关系。对于bagging算法,它的特点是各个弱学习器之间没有依赖关系,可以并行学习。之前的提升(Boosting)方法简介已经详细介绍了Boosting算法原理,今天我们主要来谈谈Bagging算法的相关内容。 1. Baggin...
阅读(26) 评论(0)

GBDT算法简介及原理

GBDT算法简介及原理...
阅读(36) 评论(0)

AdaBoost算法简介与原理

为了更好理解AdaBoost算法的核心思想,我们首先给出基于二分类的AdaBoost算法的基本步骤,然后再介绍其原理。最后给出AdaBoost的回归算法。 1. AdaBoost算法步骤 2. 对AdaBoost二分类算法的直观认识 3. AdaBoost二分类算法原理 ...
阅读(54) 评论(0)

提升(Boosting)方法简介

提升(boosting)方法是一种常用的机器学习方法,应用十分广泛。提升方法的基本思想是:对于一个复杂的学习任务,我们首先构造多个简单的学习模型,然后再把这些简单模型组合成一个高效的学习模型。实际上,就是“三个臭皮匠顶个诸葛亮”的道理。 1. 基本概念 1.1 “强可学习”和“弱可学习”        “强可学习”是指:在概率近似正确(probably approxi...
阅读(21) 评论(0)

如何在Java项目中执行python代码

最近在做一个项目,需要在java里调用python代码,网上找了一些资料,想简单总结一下。可是我对java运行机制并不是很了解,所以只能说说怎么做。 1. 安装Jython (什么是Jython) 下载安装jython_installer-2.5.0.jar, 安装完毕后需要把其中的jython.jar复制到项目中的lib中(引入jar包); ...
阅读(126) 评论(0)

协同过滤算法的基本原理与实现

协同过滤算法的基本原理与实现...
阅读(120) 评论(5)

windows下快速使用LightGBM安装教程

Windows下快速使用LightGBM安装教程(已编译) Windows下如何安装LightGBM(自编译)...
阅读(99) 评论(0)

异常值检测

高斯分布与异常值检测...
阅读(107) 评论(0)

主成分分析(PCA)简要介绍

主成分分析(PCA)简要介绍...
阅读(68) 评论(0)

奇异值分解(SVD)原理

奇异值分解(SVD)原理...
阅读(46) 评论(0)

矩阵的迹及相关性质

矩阵的迹及相关性质...
阅读(73) 评论(0)

K-means原理及应用

K-means原理及应用...
阅读(44) 评论(0)

聚类算法的几个注意点

聚类算法的几个注意点...
阅读(73) 评论(0)

scikit-learn 支持向量机算法库使用小结

scikit-learn 支持向量机算法库使用小结...
阅读(47) 评论(0)
85条 共6页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:24520次
    • 积分:1034
    • 等级:
    • 排名:千里之外
    • 原创:79篇
    • 转载:6篇
    • 译文:0篇
    • 评论:11条
    最新评论