A polyhedral surface Polyhedron_3<Traits> consists of vertices
V, edges E, facets
F and an incidence relation on them. Each edge is represented by two halfedges with opposite orientations.
Vertices represent points in 3d-space. Edges are straight line segments between two endpoints. Facets are planar polygons without holes defined by the circular sequence of halfedges along their boundary. The polyhedral surface itself can have holes. The
halfedges along the boundary of a hole are called border halfedges and have no incident facet. An edge is a
border edge if one of its halfedges is a border halfedge. A surface is
closed if it contains no border halfedges. A closed surface is a boundary representation for polyhedra in three dimensions. The convention is that the halfedges are oriented counterclockwise around facets as seen from the outside of the polyhedron. An
implication is that the halfedges are oriented clockwise around the vertices. The notion of the solid side of a facet as defined by the halfedge orientation extends to polyhedral surfaces with border edges although they do not define a closed object. If normal
vectors are considered for the facets, normals point outwards (following the right hand rule).
The strict definition can be found in [Ket99]. One implication of this definition is that the polyhedral surface is always an orientable and oriented 2-manifold with border edges, i.e., the neighborhood of each
point on the polyhedral surface is either homeomorphic to a disc or to a half disc, except for vertices where many holes and surfaces with boundary can join. Another implication is that the smallest representable surface is a triangle (for polyhedral surfaces
with border edges) or a tetrahedron (for polyhedra). Boundary representations of orientable 2-manifolds are closed under Euler operations. They are extended with operations that create or close holes in the surface.
Other intersections besides the incidence relation are not allowed, although they are not automatically handled, since self intersections are not easy to check efficiently.
Polyhedron_3<Traits> does only maintain the combinatorial integrity of the polyhedral surface (using Euler operations) and does not consider the coordinates of the points or any geometric
information.
The class Polyhedron_3<Traits> can represent polyhedral surfaces as well as polyhedra. The interface is designed in such a way that it is easy to ignore border edges and work only with
polyhedra.
The sequence of edges can be ordered in the data structure on request such that the sequence starts with the non-border edges and ends with the border edges. Border edges are then itself ordered such that the halfedge which is incident to the facet comes
first and the halfedge incident to the hole comes thereafter. This normalization step counts simultaneously the number of border edges. This number is zero if and only if the surface is a closed polyhedron. Note that this class does not maintain this counter
nor the halfedge order during further modifications. There is no automatic caching done for auxiliary information.
The first parameter requires a model of the PolyhedronTraits_3 concept as argument, for example
CGAL::Polyhedron_traits_3. The second parameter expects a model of the
PolyhedronItems_3 concept. By default, the class
CGAL::Polyhedron_items_3 is preselected. The third parameter is a class template. A model of the
HalfedgeDS concept is expected. By default, the class
CGAL::HalfedgeDS_default is preselected, which is a list based implementation of the halfedge data structure. The fourth parameter
Alloc requires a standard allocator for STL container classes. The
rebind mechanism from Alloc will be used to create appropriate allocators internally. A default is provided with the macro
CGAL_ALLOCATOR(int) from the
<CGAL/memory.h> header file.
iterator category of HalfedgeDS for all iterators.
Polyhedron_3<Traits>::circulator_category
circulator category of all circulators; bidirectional category if the
Items::Halfedge provides a
prev() member function, otherwise forward category.
Polyhedron_3<Traits>::allocator_type
allocator type Alloc.
Polyhedron_3<Traits>::Vertex
vertex type.
Polyhedron_3<Traits>::Halfedge
halfedge type.
Polyhedron_3<Traits>::Facet
facet type.
Polyhedron_3<Traits>::Point_3
point stored in vertices.
Polyhedron_3<Traits>::Plane_3
plane equation stored in facets (if supported).
The following handles, iterators, and circulators have appropriate non-mutable counterparts, i.e.,
const_handle, const_iterator, and const_circulator. The mutable types are assignable to their non-mutable counterparts. Both circulators are assignable to the
Halfedge_iterator. The iterators are assignable to the respective handle types. Wherever the handles appear in function parameter lists, the corresponding iterators can be used as well. For convenience, the
Edge_iterator enumerates every other halfedge. It is based on the CGAL::N_step_adaptor class. For convenience, the
Point_iterator enumerates all points in the polyhedral surface in the same order as the
Vertex_iterator, but with the value type Point. It is based on the
CGAL::Iterator_project adaptor. Similarly, a Plane_iterator is provided.
reserve storage for
v vertices, h halfedges, and
f facets. The reservation sizes are a hint for optimizing storage allocation. If the
capacity is already greater than the requested size nothing happens. If the
capacity changes all iterators and circulators might invalidate.
Halfedge_handle
P.make_tetrahedron ()
a tetrahedron is added to the polyhedral surface. Returns a halfedge of the tetrahedron.
Halfedge_handle
P.make_tetrahedron ( Point p1, Point p2, Point p3, Point p4)
a tetrahedron is added to the polyhedral surface with its vertices initialized to
p_{1}, p_{2}, p_{3}, and
p_{4}. Returns that halfedge of the tetrahedron which incident vertex is initialized to
p_{1}. The incident vertex of the next halfedge is
p_{2}, and the vertex thereafter is
p_{3}. The remaining fourth vertex is initialized to
p_{4}.
Halfedge_handle
P.make_triangle ()
a triangle with border edges is added to the polyhedral surface. Returns a non-border halfedge of the triangle.
Halfedge_handle
P.make_triangle ( Point p1, Point p2, Point p3)
a triangle with border edges is added to the polyhedral surface with its vertices initialized to
p_{1}, p_{2}, and
p_{3}. Returns that non-border halfedge of the triangle which incident vertex is initialized to
p_{1}. The incident vertex of the next halfedge is
p_{2}, and the vertex thereafter is
p_{3}.
Access Member Functions
bool
P.empty () const
returns true if P is empty.
size_type
P.size_of_vertices () const
number of vertices.
size_type
P.size_of_halfedges () const
number of halfedges (incl. border halfedges).
size_type
P.size_of_facets () const
number of facets.
size_type
P.capacity_of_vertices () const
space reserved for vertices.
size_type
P.capacity_of_halfedges () const
space reserved for halfedges.
size_type
P.capacity_of_facets () const
space reserved for facets.
size_t
P.bytes () const
bytes used for the polyhedron.
size_t
P.bytes_reserved () const
bytes reserved for the polyhedron.
allocator_type
P.get_allocator () const
allocator object.
Vertex_iterator
P.vertices_begin ()
iterator over all vertices.
Vertex_iterator
P.vertices_end ()
past-the-end iterator.
Halfedge_iterator
P.halfedges_begin ()
iterator over all halfedges.
Halfedge_iterator
P.halfedges_end ()
past-the-end iterator.
Facet_iterator
P.facets_begin ()
iterator over all facets (excluding holes).
Facet_iterator
P.facets_end ()
past-the-end iterator.
Edge_iterator
P.edges_begin ()
iterator over all edges.
Edge_iterator
P.edges_end ()
past-the-end iterator.
Point_iterator
P.points_begin ()
iterator over all points.
Point_iterator
P.points_end ()
past-the-end iterator.
Plane_iterator
P.planes_begin ()
iterator over all plane equations.
Plane_iterator
P.planes_end ()
past-the-end iterator.
Traits
P.traits () const
returns the traits class.
Combinatorial Predicates
bool
P.is_closed () const
returns true if there are no border edges.
bool
P.is_pure_bivalent () const
returns true if all vertices have exactly two incident edges.
bool
P.is_pure_trivalent () const
returns true if all vertices have exactly three incident edges.
bool
P.is_pure_triangle () const
returns true if all facets are triangles.
bool
P.is_pure_quad () const
returns true if all facets are quadrilaterals.
bool
P.is_triangle ( Halfedge_const_handle h) const
true iff the connected component denoted by
h is a triangle.
bool
P.is_tetrahedron ( Halfedge_const_handle h) const
true iff the connected component denoted by
h is a tetrahedron.
Euler Operators (Combinatorial Modifications)
The following Euler operations modify consistently the combinatorial structure of the polyhedral surface. The geometry remains unchanged.
splits the facet incident to h and
g into two facets with a new diagonal between the two vertices denoted by
h and g respectively. The second (new) facet is a copy of the first facet. Returns
h->next() after the operation, i.e., the new diagonal. The new face is to the right of the new diagonal, the old face is to the left. The time is proportional to the distance from
h to g around the facet.
Precondition:
h and g are incident to the same facet. h != g (no loops).
h->next() != g and g->next() != h (no multi-edges).
Halfedge_handle
P.join_facet ( Halfedge_handle h)
joins the two facets incident to
h. The facet incident to h->opposite() gets removed. Both facets might be holes. Returns the predecessor of
h around the facet. The invariant join_facet( split_facet( h, g)) returns
h and keeps the polyhedron unchanged. The time is proportional to the size of the facet removed and the time to compute
h->prev().
Precondition:
The degree of both vertices incident to h is at least three (no antennas).
splits the vertex incident to h and
g into two vertices, the old vertex remains and a new copy is created, and connects them with a new edge. Let
hnew be h->next()->opposite() after the split, i.e., a halfedge of the new edge. The split regroups the halfedges around the two vertices. The halfedge sequence
hnew, g->next()->opposite(),
… , h remains around the old vertex, while the halfedge sequence
hnew->opposite(),
h->next()->opposite() (before the split),
… , g is regrouped around the new vertex. The split returns
hnew, i.e., the new halfedge incident to the old vertex. The time is proportional to the distance from
h to g around the vertex.
Precondition:
h and g are incident to the same vertex. h != g (antennas are not allowed).
Note:
A special application of the split is split_vertex(h,h->next()->opposite()) which is equivalent to an edge split of the halfedge
h->next() that creates a new vertex on the halfedge h->next(). See also
split_edge(h) below.
Halfedge_handle
P.join_vertex ( Halfedge_handle h)
joins the two vertices incident to
h. The vertex denoted by h->opposite() gets removed. Returns the predecessor of
h around the vertex, i.e., h->opposite()->prev(). The invariant
join_vertex( split_vertex( h, g)) returns h and keeps the polyhedron unchanged. The time is proportional to the degree of the vertex removed and the time to compute
h->prev() and h->opposite()->prev().
Precondition:
The size of both facets incident to h is at least four (no multi-edges).
splits the halfedge h into two halfedges inserting a new vertex that is a copy of
h->opposite()->vertex(). Is equivalent to
split_vertex( h->prev(), h->opposite()). The call of
prev() can make this method slower than a direct call of split_vertex() if the previous halfedge is already known and computing it would be costly when the halfedge data structure does not support the
prev() member function. Returns the new halfedge hnew pointing to the inserted vertex. The new halfedge is followed by the old halfedge, i.e.,
hnew->next() == h.
Halfedge_handle
P.flip_edge ( Halfedge_handle h)
performs an edge flip. It returns
h after rotating the edge h one vertex in the direction of the face orientation.
Precondition:
h != Halfedge_handle() and both facets incident to
h are triangles.
Halfedge_handle
P.create_center_vertex ( Halfedge_handle h)
barycentric triangulation of h->facet(). Creates a new vertex, a copy of
h->vertex(), and connects it to each vertex incident to h->facet() splitting
h->facet() into triangles. h remains incident to the original facet, all other triangles are copies of this facet. Returns the halfedge
h->next() after the operation, i.e., a halfedge pointing to the new vertex. The time is proportional to the size of the facet.
Precondition:
h is not a border halfedge.
Halfedge_handle
P.erase_center_vertex ( Halfedge_handle g)
reverses create_center_vertex. Erases the vertex pointed to by
g and all incident halfedges thereby merging all incident facets. Only
g->facet() remains. The neighborhood of g->vertex() may not be triangulated, it can have larger facets. Returns the halfedge
g->prev(). Thus, the invariant h == erase_center_vertex( create_center_vertex(h)) holds if
h is not a border halfedge. The time is proportional to the sum of the size of all incident facets.
Precondition:
None of the incident facets of g->vertex() is a hole. There are at least two distinct facets incident to the facets that are incident to
g->vertex(). (This prevents the operation from collapsing a volume into two facets glued together with opposite orientations, such as would happen with any vertex of a tetrahedron.)
P.split_loop ( Halfedge_handle h, Halfedge_handle i, Halfedge_handle j)
cuts the polyhedron into two parts along the cycle
(h,i,j) (edge j runs on the backside of the three dimensional figure above). Three new vertices (one copy for each vertex in the cycle) and three new halfedges (one copy for each halfedge in the cycle), and two new triangles
are created. h,i,j will be incident to the first new triangle. The return value will be the halfedge incident to the second new triangle which is the copy of
h-opposite().
Precondition:
h,i,j denote distinct, consecutive vertices of the polyhedron and form a cycle: i.e.,
h->vertex() == i->opposite()->vertex(),
… , j->vertex() == h->opposite()->vertex(). The six facets incident to
h,i,j are all distinct.
glues the boundary of the two facets denoted by
h and g together and returns
h. Both facets and the vertices along the facet denoted by
g gets removed. Both facets may be holes. The invariant join_loop( h, split_loop( h, i, j)) returns
h and keeps the polyhedron unchanged.
Precondition:
The facets denoted by h and g are different and have equal degree (i.e., number of edges).
removes the incident facet of
h and changes all halfedges incident to the facet into border edges. Returns
h. See erase_facet(h) for a more generalized variant.
Precondition:
None of the incident halfedges of the facet is a border edge.
creates a new facet within the hole incident to
h and g by connecting the tip of
g with the tip of h with two new halfedges and a new vertex and filling this separated part of the hole with a new facet, such that the new facet is incident to
g. Returns the halfedge of the new edge that is incident to the new facet and the new vertex.
Precondition:
h->is_border(), g->is_border(), h != g, and
g can be reached along the same hole starting with h.
creates a new facet within the hole incident to
h and g by connecting the vertex denoted by
g with the vertex denoted by h with a new halfedge and filling this separated part of the hole with a new facet, such that the new facet is incident to
g. Returns the halfedge of the new edge that is incident to the new facet.
Precondition:
h->is_border(), g->is_border(), h != g, h->next() != g, and
g can be reached along the same hole starting with
h.
Erasing
void
P.erase_facet ( Halfedge_handle h)
removes the incident facet of
h and changes all halfedges incident to the facet into border edges or removes them from the polyhedral surface if they were already border edges. If this creates isolated vertices they get removed as well. See
make_hole(h) for a more specialized variant.
P.keep_largest_connected_components ( unsigned
int nb_components_to_keep)
Erases the small connected components and the isolated vertices. Keep
nb_components_to_keep largest connected components. Returns the number of connected components erased (ignoring isolated vertices).
Requirement:
supports vertices, halfedges, and removal operation.
void
P.clear ()
removes all vertices, halfedges, and facets.
Operations with Border Halfedges
Halfedges incident to a hole are called border halfedges. An halfedge is a
border edge if itself or its opposite halfedge are border halfedges. The only requirement to work with border halfedges is that the
Halfedge class provides a member function
is_border() returning a bool. Usually, the halfedge data structure supports facets and a
NULL facet pointer will indicate a border halfedge, but this is not the only possibility. The
is_border() predicate divides the edges into two classes, the border edges and the non-border edges. The following normalization reorganizes the sequential storage of the edges such that the non-border edges precede the border edges, and that for each
border edge the latter one of the two halfedges is a border halfedge (the first one is a non-border halfedge in conformance with the polyhedral surface definition). The normalization stores the number of border halfedges and the halfedge iterator the border
edges start at within the data structure. Halfedge insertion or removal and changing the border status of a halfedge invalidate these values. They are not automatically updated.
void
P.normalize_border ()
sorts halfedges such that the non-border edges precede the border edges. For each border edge the halfedge iterator will reference the halfedge incident to the facet right before the halfedge incident to the hole.
size_type
P.size_of_border_halfedges () const
number of border halfedges.
Precondition:
last normalize_border() call still valid, see above.
size_type
P.size_of_border_edges () const
number of border edges. Since each border edge of a polyhedral surface has exactly one border halfedge, this number is equal to
size_of_border_halfedges().
Precondition:
last normalize_border() call still valid, see above.
Halfedge_iterator
P.border_halfedges_begin ()
halfedge iterator starting with the border edges. The range [halfedges_begin(), border_halfedges_begin()) denotes all non-border halfedges. The range [border_halfedges_begin(), halfedges_end()) denotes
all border edges.
Precondition:
last normalize_border() call still valid, see above.
Edge_iterator
P.border_edges_begin ()
edge iterator starting with the border edges. The range [edges_begin(), border_edges_begin()) denotes all non-border edges. The range [border_edges_begin(), edges_end()) denotes all border edges.
Precondition:
last normalize_border() call still valid, see above.
Miscellaneous
void
P.inside_out ()
reverses facet orientations (incl. plane equations if supported).
returns true if the polyhedral surface is combinatorially consistent. If
verbose is true, statistics are printed to cerr. For
level == 1 the normalization of the border edges is checked too. This method checks in particular level 3 of
CGAL::Halfedge_data_structure_decorator::is_valid from page 26.3
and that each facet is at least a triangle and that the two incident facets of a non-border edge are distinct.
returns true if the border halfedges are in normalized representation, which is when enumerating all halfedges with the iterator: The non-border edges precede the border edges and for border edges, the second
halfedge is the border halfedge. The halfedge iterator border_halfedges_begin() denotes the first border edge. If
verbose is true, statistics are printed to cerr.