关闭

仿射几何学

469人阅读 评论(0) 收藏 举报

转自:http://zh.wikipedia.org/wiki/%E4%BB%BF%E5%B0%84%E5%87%A0%E4%BD%95

几何上,仿射几何是不涉及任何原点、长度或者角度概念的几何,但是有两点相减得到一个向量的概念。

它位于欧氏几何射影几何之间。它是在域K上任意维仿射空间的几何。K为实数域的情况所包含的内容足够使人了解其大部分思想。

抽象定义

有一个更精练而且最终更为成功的定义(其代价是更为费解)。对于任意群G存在一个G的主齐次空间概念:它是一个集合S,G在其上作用,作用方式和G在自身通过乘法产生一个枚举是同构的。对于一个向量空间V的仿射空间也就是这样的一个主齐次空间;然后必须在A上恢复数乘这个操作。

 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:438183次
    • 积分:4812
    • 等级:
    • 排名:第6193名
    • 原创:15篇
    • 转载:263篇
    • 译文:0篇
    • 评论:66条
    最新评论