仿射几何学

转载 2012年03月25日 21:35:15

转自:http://zh.wikipedia.org/wiki/%E4%BB%BF%E5%B0%84%E5%87%A0%E4%BD%95

几何上,仿射几何是不涉及任何原点、长度或者角度概念的几何,但是有两点相减得到一个向量的概念。

它位于欧氏几何射影几何之间。它是在域K上任意维仿射空间的几何。K为实数域的情况所包含的内容足够使人了解其大部分思想。

抽象定义

有一个更精练而且最终更为成功的定义(其代价是更为费解)。对于任意群G存在一个G的主齐次空间概念:它是一个集合S,G在其上作用,作用方式和G在自身通过乘法产生一个枚举是同构的。对于一个向量空间V的仿射空间也就是这样的一个主齐次空间;然后必须在A上恢复数乘这个操作。

 

仿射变换的通俗解释

最近看的论文里很多都用到了仿射变换,记得本科时,图形学老师曾经讲过这部分的重要性,无奈当时看到一大堆数学公式头晕脑胀,并没有真正领会仿射变换的真谛。最近看论文的过程中,愈发觉得仿射变换不管是在利用特征...
  • sgfmby1994
  • sgfmby1994
  • 2017年03月16日 16:43
  • 1060

数学的观点:向量空间和仿射空间(转)

仿射空间是假设我们已经定义好了向量空间,然后定义一个点的集合,同时规定了点和向量之间的求和运算(加和的结果仍是搜索点),这个点集就是这个向量空间相伴的仿射空间。仿射空间是假设我们已经定义好了向量空间,...
  • MagicQIT
  • MagicQIT
  • 2014年11月24日 15:55
  • 2727

仿射相关与线性相关

1.目录目录 线性组合与仿射组合 线性相关与线性独立 仿射相关与仿射独立 联系 线性组合与仿射组合 给定n个向量v1,v2...vn v_1,v_2...v_n ,其线性组合为∑i=1naivi\s...
  • hqh45
  • hqh45
  • 2015年11月02日 21:41
  • 2562

仿射变换VS透视变换

序言        在图像处理中,对图像进行二维变换有仿射变换(Affine Transformation),透视变换(Perspective Transformation)(应该还有其他变换,但是...
  • u012380663
  • u012380663
  • 2015年01月29日 17:05
  • 5568

关于OPencv里仿射变化和透射变换的理解和理论

当我们绕着图像原点进行图像旋转时,其旋转矩阵M是:  此变换如果在sin和cos前面加个系数,则是进行旋转和缩放。 如果要进行绕图像任意位置的旋转,则需计算出其:M=[α−β−βα(1−α)cente...
  • yangdashi888
  • yangdashi888
  • 2016年04月13日 21:12
  • 1414

图像变换——仿射变换

在做图像处理中有两中情况会用到图像变换,第一种就是有一副自己想要转换的图像,第二种就是我们有一个点序列并想以此计算出变换,那么我用到的是在图像拼接中的点变换,通过提取两幅要拼接图像的关键点,利用欧式距...
  • lxy201700
  • lxy201700
  • 2014年02月22日 16:45
  • 6810

为什么需要仿射空间?

仿射空间与仿射变换在计算机图形学中有着很重要的应用。在线性空间中,我们用矩阵乘向量的方法,可以表示各式各样的线性变换,完成诸多的功能,但是有一种极其常用的变换却不能用线性变换的方式表示,那就是平移,一...
  • caimouse
  • caimouse
  • 2017年01月16日 15:51
  • 823

仿射变换再次秒杀2011山东理科高考压轴题(圆锥曲线)

2011年山东高考题压轴题是一道圆锥曲线,硬算起来很麻烦。还要讨论斜率存在不存在 现用仿射变换秒杀这道题。   一般方法如下:        ...
  • ltqwby
  • ltqwby
  • 2015年02月01日 15:35
  • 4331

信息安全之仿射密码加密和解密

本文可以对一个
  • LYHVOYAGE
  • LYHVOYAGE
  • 2014年11月18日 20:50
  • 7395

仿射密码的加密和解密,蛮力攻击C++实现

实现代码如下: void exEuclidean(int a,int b,int &s,int &t){ int r1 = a, r2 = b , s1 = 1, s2 = 0, t1 ...
  • qq_33826977
  • qq_33826977
  • 2017年06月21日 17:20
  • 495
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:仿射几何学
举报原因:
原因补充:

(最多只允许输入30个字)