perl-opengl几何变换函数

Perl代码 复制代码  收藏代码
  1. #!/usr/bin/perl -w   
  2. use strict;   
  3. use warnings;   
  4. use OpenGL qw/ :all /;   
  5. use OpenGL::Config;      
  6.   
  7. glutInit();   
  8. glutInitDisplayMode(GLUT_RGB|GLUT_SINGLE);   
  9. glutInitWindowPosition(100,100);   
  10. glutInitWindowSize(400,400);   
  11. glutCreateWindow("opengl");   
  12. glClearColor(0,0,0,255);   
  13. glClear(GL_COLOR_BUFFER_BIT);     
  14. glMatrixMode(GL_PROJECTION);   
  15. gluOrtho2D(-100,100,-100,100);   
  16. glMatrixMode(GL_MODELVIEW);   
  17. glutDisplayFunc(\&mydis);   
  18. glutMainLoop();   
  19. return 0;   
  20.   
  21. sub mydis()   
  22. {   
  23.   glClearColor(0,0,0,255);   
  24.   glClear(GL_COLOR_BUFFER_BIT);    
  25.   glLoadIdentity();   
  26.   glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);     
  27.   glColor3f(1,1,1);   
  28.   glBegin(GL_LINES);   
  29.   glVertex2f(-100,0);   
  30.   glVertex2f(100,0);    
  31.   glEnd();   
  32.   glBegin(GL_LINES);   
  33.   glVertex2f(0,-100);   
  34.   glVertex2f(0,100);    
  35.   glEnd();    
  36.   # 画矩形   
  37.   glColor3f(0.5,0.1,0);     
  38.   glRecti(-50,-50,50,50);   
  39.   glFlush();   
  40.   glPushMatrix();   
  41.   #向x方向移动3.5个单位,y方向移动8.5个单位   
  42.   glColor3f(0.1,0.1,0.9);     
  43.   glTranslatef(3.5,8.5,0);   
  44.   glRecti(-50,-50,50,50);   
  45.   glFlush();     
  46.   glPopMatrix();   
  47.   glPushMatrix();     
  48.   #x方向放大到1.2倍,y方向放大到1.8倍   
  49.   glColor3f(0.1,0.9,0.1);    
  50.   glScalef(1.2,1.8,1);    
  51.   glRecti(-50,-50,50,50);   
  52.   glFlush();    
  53.   glPopMatrix();   
  54.   glPushMatrix();      
  55.   #x方向缩小至0.5倍,y方向缩小至0.8倍   
  56.   glColor3f(0.9,0.9,0.9);    
  57.   glScalef(0.5,0.8,1);    
  58.   glRecti(-50,-50,50,50);   
  59.   glFlush();    
  60.   glPopMatrix();   
  61.   glPushMatrix();     
  62.   #二维旋转,相对于坐标原点的   
  63.   glColor3f(0.7,0.8,0.7);   
  64.   my ($x1,$y1,$x2,$y2)=(15,15,15,50);   
  65.   for (my $theta=5;$theta<360;$theta+=5)   
  66.   {    
  67.     glRotatef($theta,0,0,1);#相对于z轴   
  68.     glRecti(-50,-50,50,50);    
  69.   }       
  70.   glFlush();     
  71. }  

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值