排序算法之二分法(折半)插入排序算法

本文介绍了折半插入排序的基本思想,它利用二分查找法提高寻找插入位置的效率。虽然时间复杂度仍为O(n^2),但减少了比较次数。稳定性与直接插入排序相同,保持了稳定性,空间复杂度为O(1)。

基本思想

折半插入排序的基本思想与直接插入排序一样,在插入第i(i1)个元素时,前面

### 关于折半插入排序 #### 数据结构与内部排序概述 内部排序是指在整个排序过程中,所有的待排序记录存放在计算机内存中的排序过程。对于大量数据而言,内部排序算法的选择至关重要。 #### 折半插入排序简介 折半插入排序是对直接插入排序的一种优化形式。该方法利用了二分查找的思想来减少寻找插入位置所需的比较次数。尽管如此,实际的数据移动量未改变,因为每次找到合适的位置后依然需要将后续元素向后移位以腾出空间给新加入的元素[^2]。 #### 排序方法详解 在折半插入排序中,为了确定当前元素应当放置的确切位置,不是线性扫描已有的有序部分,而是采用二分搜索的方式来进行定位。具体操作如下: 1. 设定两个指针分别指向数组两端; 2. 计算中间点将其作为试探性的目标索引; 3. 如果发现当前位置不适合,则调整边界继续上述过程直到锁定最终位置; 这种方法能够有效降低不必要的对比动作,特别是在面对较大规模但是已经基本有序的数据集时表现尤为明显[^3]。 #### 代码实现 以下是Python语言下的简单实现例子: ```python def binary_insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] low, high = 0, i - 1 # 使用二分法找寻key应该被插入的地方 while low <= high: mid = (low + high) // 2 if arr[mid] < key: low = mid + 1 else: high = mid - 1 # 将大于key的部分右移一位 for j in reversed(range(low, i)): arr[j + 1] = arr[j] # 插入key到正确位置 arr[low] = key return arr ``` #### 复杂度分析 - **时间复杂度**: 虽然通过引入二分查找降低了单次插入所需的最大比较次数至\(O(\log n)\),但由于每一轮循环内还需要完成一次完整的子列表平移工作,整体来看其最坏情况以及平均情况下的渐近运行时间为\(O(n^2)\)。 - **空间复杂度**: 和其他基于交换或覆盖机制工作的原地(in-place)排序一样,除了几个用于控制流程的小变量外不消耗额外的空间资源,即为常数级别\(O(1)\)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值