公理系统的相容性、独立性和完备性

原创 2007年10月02日 16:56:00
几何公理体系的三个基本问题
任何公理体系,包括初等几何公理体系,都有三个基本总题:
1)无矛盾性问题(即相容问题):
2)最少个数问题(即独立性问题);
3)完备性问题;
第一个问题要求公理体系的各个公理以及经过一串推导得出的命题不能相互矛盾,首先要求公理之间不相互矛盾,这显然是必要的条件。
证明公理体系的相容性常用模型法。公理法是抽象的,它所考虑的对象(几何元素点、直线、平面)以及对象之间的关系或运算(几何上讲的结合、顺序、合同),都是不加定义的,但要满足公理的要求。设给定一组公理,在某些对象间建立了确定性质的相互关系。从所采用的公理,可以对这些对象的这些性质作逻辑推理,而完全不必理睬它们的其它一切可能的性质——只要公理中没有提到。
所以一个已知公理体系的对象可以是任意种类的事物,而且在公理中提到的它们之间的关系,可以有任何具体意义——只要公理的要求得到满足。
给定一组公理,选一组具体事物使这组公理得到满足,就认为给这组公理做了一个实现或解释,实现这些公理的对象的集合,构成这些公理体系的一个模型。
一个公理体系若能以某种方法用模型来实现,那么这个公理体系就是相容的。
举一个具体的例子来说明,我们给第一组公理造一个模型。
取一个四面体,约定将它的顶点叫做“点”,棱叫做“直线”,面叫做“平面”,在这个实现里,构成几何元素的集合是四点、六直线、四平面。
正像在任何实现里一样,此刻应将结合性具体叙述出来。我们约定,与四面体的顶点,例如所代表的“点”相结合的“直线”就是含顶点的棱,与“点”相结合的平面就是四面体含顶点的面;与“直线相结合的“平面”就是四面体含棱的面。
容易验证,在这个模型里,公理全部满足。
这个四面体模型的存在,还给我们带来一个更宝贵的信息,即从第一组结合公理不能推选出几何元素的个数是无穷的,因为四面体模型只有个元素,但却已实现了它。
初等几何公理体系的相容性证明是相对的,即有条件的,一般的几何基础书在介绍平面几何公理和II——V的相容性证明时,都给出一个笛卡尔实现。结论是:
如果实数的算术是相容的,则公理I——V是相容的。
第二个问题是公理的独立性问题。如果公理体系中有一个公理可以由其余公理推倒出来,它就不是独立的,可以把它从公理表中挪走,减少一个公理。试证第五公设的过程就是这样一个过程。但是为了简化演绎过程,有时也多列出一条公理。例如近年的中学几何课本中把三角形全等的三条定理都当作公理用。
还须注意,一种几何可以用不同的公理体第作为基础,所以去掉多余的公理(如果有的话)之后,一般来说,可以得到不同的最少个数体系。因此,最少个数的公理体系决不是惟一的。
一组公理的独立性,虽然非必要的,却是我们所期望的。设一作用于公理含有个相容的公理,要表明其中一个对于其余的公理的独立性,办法是把它化为一个相容的问题,即证明公理组(表示的反而)
的相容性。这是因为如果能从推出,上一行的公理中就将既含又含,就不相容了。
公理法的第三个基本问题是完备性问题。
定义 设一个公理体系具有两个模型,如果在的对象之间能建立这样的一一对应,使得中元素间的相互关系或命题,总与中相应元素间的相互关系或命题相对应,则称这两模型是同构的。
定义 如果一个公理体系的各个模型是同构的,就称这个公理体系是完备的。
由于希尔伯特构作的公理体系使得它有一个笛卡尔模型同构,因而相互同构。所以公理体系I——V是完备的。
几何公理的三个基本问题中,相容性是必要的,独立性和完备性不是必要的,正在发展中的数学分支一般不具有完备性。数学中的一些公理体系正因为不具有完备性,才有了各色各样的模型,显示出这个公理体系的广泛应用。
 

哥德尔不完备性定理——从数学危机到哲学危机

一、哥德尔不完备性定理的基本内容    一个普遍公认的事实是,哥德尔不完备性定理在数理逻辑中占有极其重要的地位,是数学与逻辑发展史中的一个里程碑。    哥德尔关于形式系统的不完备性定理,首次发表...
  • tiankonguse
  • tiankonguse
  • 2014年02月20日 14:50
  • 1076

柯西序列与完备空间

cauchy sequence; 1. 柯西序列的定义设 xn{x_n} 是距离空间 X 中的点列,如果对于任意的 ε>0ε>0,存在自然数N,当 m,n>Nm,n>N 时,|xn−xm|...
  • lanchunhui
  • lanchunhui
  • 2016年11月04日 10:51
  • 1215

完备性的定义(ZZ)

完备性在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。简介   完备性也称完全性,可以从多个不同的角度来精确描述这个定义,同时可以引入完备化这个...
  • xiaoguiyuan
  • xiaoguiyuan
  • 2010年11月22日 20:13
  • 3767

哥德尔不完备定理----一切都是非真即假的吗

如果有一个人说:“我在说谎” 那么,他说的话是谎言吗? 如果是假的,那么他说的反而是真的,如果是真的,那么他说的反而是假的了。 如果这话是匹诺曹说的,恐怕他的鼻子就得变成永动机了。 匹诺曹:“...
  • qq_36403266
  • qq_36403266
  • 2017年01月30日 09:30
  • 190

稀疏表示 过完备 字典

2基于局部时窄特征的动作识别模哩2.1 动作识别的基本思想实现了基于时空兴趣点和时空单词的动作表示和识别方法,该方法首先通过训练从样本中提取出准确的时空兴趣点,建立基于兴趣点特征的时空码本,并构造出动...
  • zhangzhengyuan123123
  • zhangzhengyuan123123
  • 2014年08月08日 22:08
  • 2649

命题逻辑中的语法与语义,可靠性与完备性

对命题逻辑中的语法与语义,可靠性与完备性,给出了浅显易懂的解析。
  • on_1y
  • on_1y
  • 2013年03月27日 17:41
  • 4514

计算科学的根本问题:什么能被有效地自动化,即对象的能行性问题(转)

 计算科学的根本问题http://bbs.xml.org.cn/dispbbs.asp?boardID=64&ID=50970科学问题是指一定时代的科学认识主体(人),在已完成的科学知识和科学实践的基...
  • keminlau
  • keminlau
  • 2007年08月09日 01:44
  • 10062

Android Vector曲折的兼容之路

转载于 http://blog.csdn.net/eclipsexys/article/details/51838119 Android Vector曲折的兼容之路 两年前写书的时...
  • sd19871122
  • sd19871122
  • 2016年07月06日 15:41
  • 244

数据库 - 数据依赖的公理系统

数据依赖的公理系统逻辑蕴含 定义6.11 对于满足一组函数依赖 F 的关系模式R ,其任何一个关系r,若函数依赖X→Y都成立, (即r中任意两元组t,s,若tX]=sX],则tY]=sY])...
  • wangzi11322
  • wangzi11322
  • 2015年05月07日 09:45
  • 3468

信号分解:双正交、完备性、对偶向量

1.信号分解及完备性 设是X由一组向量所张成,即: 如果线性独立,我们则称它们为空间中的一组基”。 那么信号x可以离散表示如下: 若是一组两两互相正交的向量,展式称为x的正交展开。分解...
  • shenziheng1
  • shenziheng1
  • 2017年03月07日 00:19
  • 1112
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:公理系统的相容性、独立性和完备性
举报原因:
原因补充:

(最多只允许输入30个字)