关闭

公理系统的相容性、独立性和完备性

4433人阅读 评论(0) 收藏 举报
几何公理体系的三个基本问题
任何公理体系,包括初等几何公理体系,都有三个基本总题:
1)无矛盾性问题(即相容问题):
2)最少个数问题(即独立性问题);
3)完备性问题;
第一个问题要求公理体系的各个公理以及经过一串推导得出的命题不能相互矛盾,首先要求公理之间不相互矛盾,这显然是必要的条件。
证明公理体系的相容性常用模型法。公理法是抽象的,它所考虑的对象(几何元素点、直线、平面)以及对象之间的关系或运算(几何上讲的结合、顺序、合同),都是不加定义的,但要满足公理的要求。设给定一组公理,在某些对象间建立了确定性质的相互关系。从所采用的公理,可以对这些对象的这些性质作逻辑推理,而完全不必理睬它们的其它一切可能的性质——只要公理中没有提到。
所以一个已知公理体系的对象可以是任意种类的事物,而且在公理中提到的它们之间的关系,可以有任何具体意义——只要公理的要求得到满足。
给定一组公理,选一组具体事物使这组公理得到满足,就认为给这组公理做了一个实现或解释,实现这些公理的对象的集合,构成这些公理体系的一个模型。
一个公理体系若能以某种方法用模型来实现,那么这个公理体系就是相容的。
举一个具体的例子来说明,我们给第一组公理造一个模型。
取一个四面体,约定将它的顶点叫做“点”,棱叫做“直线”,面叫做“平面”,在这个实现里,构成几何元素的集合是四点、六直线、四平面。
正像在任何实现里一样,此刻应将结合性具体叙述出来。我们约定,与四面体的顶点,例如所代表的“点”相结合的“直线”就是含顶点的棱,与“点”相结合的平面就是四面体含顶点的面;与“直线相结合的“平面”就是四面体含棱的面。
容易验证,在这个模型里,公理全部满足。
这个四面体模型的存在,还给我们带来一个更宝贵的信息,即从第一组结合公理不能推选出几何元素的个数是无穷的,因为四面体模型只有个元素,但却已实现了它。
初等几何公理体系的相容性证明是相对的,即有条件的,一般的几何基础书在介绍平面几何公理和II——V的相容性证明时,都给出一个笛卡尔实现。结论是:
如果实数的算术是相容的,则公理I——V是相容的。
第二个问题是公理的独立性问题。如果公理体系中有一个公理可以由其余公理推倒出来,它就不是独立的,可以把它从公理表中挪走,减少一个公理。试证第五公设的过程就是这样一个过程。但是为了简化演绎过程,有时也多列出一条公理。例如近年的中学几何课本中把三角形全等的三条定理都当作公理用。
还须注意,一种几何可以用不同的公理体第作为基础,所以去掉多余的公理(如果有的话)之后,一般来说,可以得到不同的最少个数体系。因此,最少个数的公理体系决不是惟一的。
一组公理的独立性,虽然非必要的,却是我们所期望的。设一作用于公理含有个相容的公理,要表明其中一个对于其余的公理的独立性,办法是把它化为一个相容的问题,即证明公理组(表示的反而)
的相容性。这是因为如果能从推出,上一行的公理中就将既含又含,就不相容了。
公理法的第三个基本问题是完备性问题。
定义 设一个公理体系具有两个模型,如果在的对象之间能建立这样的一一对应,使得中元素间的相互关系或命题,总与中相应元素间的相互关系或命题相对应,则称这两模型是同构的。
定义 如果一个公理体系的各个模型是同构的,就称这个公理体系是完备的。
由于希尔伯特构作的公理体系使得它有一个笛卡尔模型同构,因而相互同构。所以公理体系I——V是完备的。
几何公理的三个基本问题中,相容性是必要的,独立性和完备性不是必要的,正在发展中的数学分支一般不具有完备性。数学中的一些公理体系正因为不具有完备性,才有了各色各样的模型,显示出这个公理体系的广泛应用。
 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:39337次
    • 积分:693
    • 等级:
    • 排名:千里之外
    • 原创:29篇
    • 转载:0篇
    • 译文:0篇
    • 评论:4条
    最新评论