关闭

Stamps_usaco3.1_dp

标签: dpc++usaco邮票
126人阅读 评论(0) 收藏 举报
分类:

题目描述 Description


已知一个 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票。计算从 1 到 M 的最大连续可贴出的邮资。

例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票。很容易贴出 1 到 5 分的邮资(用 1 分邮票贴就行了),接下来的邮资也不难:

6 = 3 + 3
7 = 3 + 3 + 1
8 = 3 + 3 + 1 + 1
9 = 3 + 3 + 3
10 = 3 + 3 + 3 + 1
11 = 3 + 3 + 3 + 1 + 1
12 = 3 + 3 + 3 + 3
13 = 3 + 3 + 3 + 3 + 1
然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资。因此,对于这两种邮票的集合和上限 K=5,答案是 M=13。

小提示:因为14贴不出来,所以最高上限是13而不是15

输入描述 Input Description


第 1 行: 两个整数,K 和 N。K(1 <= K <= 200)是可用的邮票总数。N(1 <= N <= 50)是邮票面值的数量。

第 2 行 .. 文件末: N 个整数,每行 15 个,列出所有的 N 个邮票的面值,每张邮票的面值不超过 10000。

输出描述 Output Description


第 1 行:一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数。

题解 Analysis


设♂f[i]表示组成i元所需的最少硬币数量,那么
f[i]=min(f[iw[j]])+1
i是不定的,找到第一个比k大的就退咯
论切题的感觉

代码 Code


/*
ID:wjp13241
PROG:stamps
LANG:C++
*/
#include <stdio.h>
using namespace std;
int f[1996091];
int w[51];
int min(int x,int y)
{
    return x<y?x:y;
}
int main()
{
    freopen("stamps.in","r",stdin);
    freopen("stamps.out","w",stdout);
    int n,m;
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++)
        scanf("%d",&w[i]);
    int i=0;
    while(true)
    {
        f[++i]=0x7fffffff;
        for (int j=1;j<=m;j++)
            if (i-w[j]>=0)
                f[i]=min(f[i-w[j]]+1,f[i]);
        if (f[i]>n)
            break;
    }
    printf("%d\n",i-1);
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:62404次
    • 积分:4567
    • 等级:
    • 排名:第6437名
    • 原创:393篇
    • 转载:7篇
    • 译文:0篇
    • 评论:25条
    最新评论