关闭

Tree2cycle hdu4714 贪心

标签: c++hdu贪心
157人阅读 评论(0) 收藏 举报
分类:

Description


给定一棵N个节点的树,去掉这棵树的一条边需要消耗值1,为这个图的两个点加上一条边也需要消耗值1。树的节点编号从1开始。在这个问题中,你需要使用最小的消耗值(加边和删边操作)将这棵树转化为环,不允许有重边。
环的定义如下:
(1)该图有N个点,N条边。
(2)每个顶点的度数为2。
(3)任意两点是可达的。
树的定义如下:
(1)该图有N个点,N-1条边。
(2)任意两点是可达的。

Solution


想到了树链剖分的模型

一棵树是可以分成很多条链的,而这些链又能连成环。那么我们只需要考虑如何去边使得链的数量最少就行了

记节点i的儿子数量为son,那么需要切掉son-2+1条边,记最后剩下tot条链,答案为tot*2+1
良心题库支持扩栈

Code


#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#define rep(i, st, ed) for (int i = st; i <= ed; i += 1)
#define erg(i, st) for (int i = ls[st]; i; i = e[i].next)
#define N 1000001
#define E N * 2 + 1
struct edge{int x, y, next;}e[E];
inline int read(){
    char ch = getchar(); int x = 0;
    while (ch < '0' || ch > '9'){
        ch = getchar();
    }
    while (ch <= '9' && ch >= '0'){
        x = (x << 1) + (x << 3) + ch - '0';
        ch = getchar();
    }
    return x;
}
int ind[N], ls[N];
inline void addEdge(int &cnt, int x, int y){
    cnt += 1; e[cnt] = (edge){x, y, ls[x]}; ls[x] = cnt; ind[y] += 1;
    cnt += 1; e[cnt] = (edge){y, x, ls[y]}; ls[y] = cnt; ind[x] += 1;
}
int vis[N], ans;
inline int dfs(int now, int fa){
    vis[now] = 1;
    int cnt = 0;
    erg(i, now){
        if (!vis[e[i].y]){
            cnt += dfs(e[i].y, now);
        }
    }
    if (cnt >= 2){
        ans += cnt - 1;
    }
    return cnt < 2;
}
int main(void){
    int n = read();
    int edgeCnt = 0;
    rep(i, 2, n){
        int x = read(), y = read();
        addEdge(edgeCnt, x, y);
    }
    ans = 0;
    int root;
    rep(i, 1, n){
        if (ind[i] == 1){
            root = i;
            break;
        }
    }
    dfs(root, 0);
    printf("%d\n", ans * 2 + 1);
    // printf("%d\n", n * 2 - dis[ans] * 2 + 1);
    return 0;
}
1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:82229次
    • 积分:5191
    • 等级:
    • 排名:第5879名
    • 原创:434篇
    • 转载:7篇
    • 译文:0篇
    • 评论:25条
    联系我
    QQ:315253566
    最新评论