hive版本wordcount

本文介绍如何利用Hive简化Hadoop MapReduce的统计操作,通过创建数据库、建表、拆分数据、统计等步骤实现高效的数据处理。相比直接编写MapReduce代码,Hive提供了更简洁的操作方式,尤其适用于复杂统计任务。

1. wordcount程序相当于hadoop MapReduce的一个helloworld程序吧,主要是将文件中的单词内容一行一行得读入,在map端进行拆分,拆成key-value的形式, key是具体的单词,value是数字1,map到reduce的过程会进行一次归并,将key一样的进行合并组成key-values的形式,其中key是具体的单词,values是很多个1,在reduce端将这个values循环相加就是这个单词的个数。

2. 纯的MR代码如下:

    

/**
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.jthink.bg.hellowrold;

import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,
                InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "word count");

//        File jarFile = EJob.createTempJar("bin");
//        System.out.println("jarFile==" + jarFile);
//        ((JobConf) job.getConfiguration()).setJar(jarFile.toString());

        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path("hdfs://bg01:9000/bg/wordcount/input"));
        FileOutputFormat.setOutputPath(job, new Path("hdfs://bg01:9000/bg/wordcount/output"));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
3. 这样做需要写很多java代码,但是如果放到hive中就比较简单(关于hive是什么就不细说了),具体做法如下:

    a. 创建一个数据库,如levi

        create database levi;

    b. 建表

create external table src_data(line string) row format delimited fields terminated by '\n' stored as textfile location '/levi/wordcount/src_data';

这里假设我们的数据存放在hadoop下,路径为:/levi/wordcount/src_data,里面主要是一些单词文件,内容大概为:

hi man
what is your name
my name is levi
you
kevin

执行了上述hql就会创建一张表src_data,内容是这些文件的每行数据,每行数据存在字段line中,select * from src_data; 就可以看到这些数据

    c. 根据MapReduce的规则,我们需要进行拆分,把每行数据拆分成单词,这里需要用到一个hive的内置表生成函数(UDTF):explode(array),参数是array,其实就是行变多列:

create table words(word string);

insert into table words select explode(split(line, " ")) as word from src_data;

split是拆分函数,跟java的split功能一样,这里是按照空格拆分,所以执行完hql语句,words表里面就全部保存的单个单词

    d. 这样基本实现了,因为hql可以group by,所以最后统计语句为:

select word, count(*) from levi.words group by word;

4. 对比写MR和写hive,还是hive比较简便,对于比较复杂的统计操作可以建一些中间表,或者一些视图之类的,之后博客会持续更新hive的一些操作。

<think> 首先,用户的问题是基于系统级指令和提供的引用,用户想查找使用Hive实现Wordcount的方法。系统级指令要求使用中文回答,所有数学表达式用$...$或$$...$$格式,但当前问题没有涉及数学内容,所以可能不需要。还需要生成相关问题并结构化回答。 回顾引用内容: - 引用[1]描述了创建数据库、表、加载数据、切分单词、计数步骤。 - 引用[2]类似,加载数据到表。 - 引用[3]创建表并插入数据。 - 引用[4]用一个SQL语句实现,包括split和group by。 - 引用[5]创建外部表并指定位置。 用户真正的需求是了解使用Hive实现Wordcount的方法。我应该基于引用综合回答。 结构化回答: 1. **概述**:简要解释什么是Wordcount和使用Hive的好处(分布式计算)。 2. **步骤**:详细描述实现步骤,参考引用。 3. **示例代码**:提供Hive QL代码示例。 4. **相关问题**:生成相关问题。 确保回答真实可靠:基于Hive的工作原理,Wordcount是常见示例。 关键步骤(综合引用): - 创建数据库和表存放文档。 - 加载数据(文本文件)。 - 切分单词(使用split和explode)。 - 分组计数(group by)。 - 输出结果。 在回答中引用的段落末尾添加引用标识,如[^1]。 生成相关问题: - 如优化、错误处理、其他应用等。 最终回答结构: - 引言 - 详细方法 - 示例 - 相关问题 </think> ### 使用Hive实现WordCount的方法 WordCount是一个经典的词频统计任务,用于统计文本中每个单词的出现次数。Hive通过将SQL查询转换为MapReduce任务来实现分布式处理,适合处理数据集。以下是基于引用内容的完整实现步骤,结合Hive SQL语法和MapReduce原理[^1][^4]。 #### 核心步骤 1. **创建数据库和表** - 创建一个数据库(可选),然后在数据库中创建表用于存储原始文本数据。 - 引用[1][^1]和引用[4][^4]:表结构通常只包含一列(字符串类型),存储每行文本。 ```sql CREATE DATABASE IF NOT EXISTS wordcount_db; -- 可选,创建数据库 USE wordcount_db; CREATE TABLE docs (line STRING); -- 存储原始文本行 ``` 2. **加载数据到表** - 将本地或HDFS中的文本文件导入表中。`LOCAL INPATH`指定本地路径,`INPATH`指定HDFS路径(无`LOCAL`时)。 - 引用[1][^1]和引用[2][^2]:加载数据支持分布式存储。 ```sql -- 加载本地文件(例如:/user/hadoop/input/data.txt) LOAD DATA LOCAL INPATH '/path/to/local/data.txt' INTO TABLE docs; -- 或加载HDFS文件(例如:hdfs:///user/data.txt) LOAD DATA INPATH 'hdfs:///user/data.txt' INTO TABLE docs; ``` 3. **切分单词并生成中间表** - 使用Hive内置函数`split()`按空格分隔单词,结合`explode()`将数组拆分为多行(每行一个单词)。 - 引用[1][^1]和引用[4][^4]:创建新表存储拆分后的单词。 ```sql CREATE TABLE words (word STRING); -- 存储拆分后的单词 INSERT INTO TABLE words SELECT explode(split(line, ' ')) AS word FROM docs; -- 拆分为单个单词 ``` 4. **分组统计词频** - 对`words`表分组(`GROUP BY word`)并计数(`COUNT(*)`),可选排序(`ORDER BY`)。 - 引用[1][^1]和引用[4][^4]:直接输出每个单词的频次。 ```sql SELECT word, COUNT(*) AS frequency FROM words GROUP BY word ORDER BY frequency DESC; -- 降序排列结果 ``` #### 完整示例代码 以下是基于引用[4][^4]的简化流程,只需一个SQL查询实现(假设表`words`已创建): ```sql -- 第一步:创建原始表并加载数据(以HDFS路径为例) CREATE TABLE docs (line STRING); LOAD DATA INPATH 'hdfs:///user/input/text.txt' INTO TABLE docs; -- 第二步:执行单条查询统计词频 SELECT t.word, COUNT(*) AS frequency FROM ( SELECT explode(split(line, ' ')) AS word FROM docs -- 拆分单词 ) t GROUP BY t.word ORDER BY frequency DESC; ``` - **输出示例**: | word | frequency | |--------|----------| | hello | 3 | | hive | 2 | | java | 1 | #### 关键说明 - **Hive底层原理**:Hive将SQL转换为MapReduce任务。`split`和`explode`对应Map阶段的单词分割,`GROUP BY`和`COUNT`对应Reduce阶段的聚合[^4][^5]。 - **优化建议**: - 使用外部表(如引用[5][^5])避免数据重复:`CREATE EXTERNAL TABLE ... LOCATION 'hdfs://path'`。 - 处理特殊字符:在`split()`函数中添加正则表达式,例如`split(line, '\\s+')`匹配多个空格。 - **常见错误**: - 路径错误:确保`INPATH`路径正确,HDFS文件需提前上传[^2][^4]。 - 单词切分不准确:文本包含标点或空格时,需预处理数据或调整`split()`参数。 该方法高效处理大规模文本,常用于日志分析或文本挖掘[^1][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值