hive版本wordcount

22 篇文章 0 订阅
12 篇文章 0 订阅
本文介绍如何利用Hive简化Hadoop MapReduce的统计操作,通过创建数据库、建表、拆分数据、统计等步骤实现高效的数据处理。相比直接编写MapReduce代码,Hive提供了更简洁的操作方式,尤其适用于复杂统计任务。
摘要由CSDN通过智能技术生成

1. wordcount程序相当于hadoop MapReduce的一个helloworld程序吧,主要是将文件中的单词内容一行一行得读入,在map端进行拆分,拆成key-value的形式, key是具体的单词,value是数字1,map到reduce的过程会进行一次归并,将key一样的进行合并组成key-values的形式,其中key是具体的单词,values是很多个1,在reduce端将这个values循环相加就是这个单词的个数。

2. 纯的MR代码如下:

    

/**
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

package com.jthink.bg.hellowrold;

import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,
                InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "word count");

//        File jarFile = EJob.createTempJar("bin");
//        System.out.println("jarFile==" + jarFile);
//        ((JobConf) job.getConfiguration()).setJar(jarFile.toString());

        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path("hdfs://bg01:9000/bg/wordcount/input"));
        FileOutputFormat.setOutputPath(job, new Path("hdfs://bg01:9000/bg/wordcount/output"));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
3. 这样做需要写很多java代码,但是如果放到hive中就比较简单(关于hive是什么就不细说了),具体做法如下:

    a. 创建一个数据库,如levi

        create database levi;

    b. 建表

create external table src_data(line string) row format delimited fields terminated by '\n' stored as textfile location '/levi/wordcount/src_data';

这里假设我们的数据存放在hadoop下,路径为:/levi/wordcount/src_data,里面主要是一些单词文件,内容大概为:

hi man
what is your name
my name is levi
you
kevin

执行了上述hql就会创建一张表src_data,内容是这些文件的每行数据,每行数据存在字段line中,select * from src_data; 就可以看到这些数据

    c. 根据MapReduce的规则,我们需要进行拆分,把每行数据拆分成单词,这里需要用到一个hive的内置表生成函数(UDTF):explode(array),参数是array,其实就是行变多列:

create table words(word string);

insert into table words select explode(split(line, " ")) as word from src_data;

split是拆分函数,跟java的split功能一样,这里是按照空格拆分,所以执行完hql语句,words表里面就全部保存的单个单词

    d. 这样基本实现了,因为hql可以group by,所以最后统计语句为:

select word, count(*) from levi.words group by word;

4. 对比写MR和写hive,还是hive比较简便,对于比较复杂的统计操作可以建一些中间表,或者一些视图之类的,之后博客会持续更新hive的一些操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值