1. wordcount程序相当于hadoop MapReduce的一个helloworld程序吧,主要是将文件中的单词内容一行一行得读入,在map端进行拆分,拆成key-value的形式, key是具体的单词,value是数字1,map到reduce的过程会进行一次归并,将key一样的进行合并组成key-values的形式,其中key是具体的单词,values是很多个1,在reduce端将这个values循环相加就是这个单词的个数。
2. 纯的MR代码如下:
/**
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.jthink.bg.hellowrold;
import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException,
InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "word count");
// File jarFile = EJob.createTempJar("bin");
// System.out.println("jarFile==" + jarFile);
// ((JobConf) job.getConfiguration()).setJar(jarFile.toString());
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("hdfs://bg01:9000/bg/wordcount/input"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://bg01:9000/bg/wordcount/output"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
3. 这样做需要写很多java代码,但是如果放到hive中就比较简单(关于hive是什么就不细说了),具体做法如下:
a. 创建一个数据库,如levi
create database levi;
b. 建表
create external table src_data(line string) row format delimited fields terminated by '\n' stored as textfile location '/levi/wordcount/src_data';
这里假设我们的数据存放在hadoop下,路径为:/levi/wordcount/src_data,里面主要是一些单词文件,内容大概为:
hi man
what is your name
my name is levi
you
kevin
执行了上述hql就会创建一张表src_data,内容是这些文件的每行数据,每行数据存在字段line中,select * from src_data; 就可以看到这些数据
c. 根据MapReduce的规则,我们需要进行拆分,把每行数据拆分成单词,这里需要用到一个hive的内置表生成函数(UDTF):explode(array),参数是array,其实就是行变多列:
create table words(word string);
insert into table words select explode(split(line, " ")) as word from src_data;
split是拆分函数,跟java的split功能一样,这里是按照空格拆分,所以执行完hql语句,words表里面就全部保存的单个单词
d. 这样基本实现了,因为hql可以group by,所以最后统计语句为:
select word, count(*) from levi.words group by word;
4. 对比写MR和写hive,还是hive比较简便,对于比较复杂的统计操作可以建一些中间表,或者一些视图之类的,之后博客会持续更新hive的一些操作。