关闭

求最长单调递减子序列

标签: 算法cinistringjava
305人阅读 评论(0) 收藏 举报

问题描述:给出一个数列,找出其中最长的单调递减(或递增)子序列。

 

解题思路:动态规划。假设0到i-1这段数列的最长递减序列的长度为s,且这些序列们的末尾值中的最大值是t。对于a[i]有一下情况:

(1) 如果a[i]比t小,那么将a[i]加入任何一个子序列都会使0到i的最长单调序列长度变成s+1,这样的话,在0到i的数列中,长度为s+1的递减子序列的末尾值最大值就是a[i];

(2) 如果a[i]和t相等,那么说明数列从0项到i项的最长单调子序列长度就是s;

(3) 如果a[i]比t大,那么a[i]就不一定能够成为长度为s的递减子序列的末项,这取决于长度为s-1的各个递减子序列的末尾值的最大值t'。

     如果t'比a[i]要大,那么就可以形成长度为s的递减子序列,如果t'比a[i]小,那么问题就在往前递推,把a[i]和长度为s-2的各个递减子序列的末尾值的最大值比较,直到:(1) a[i]比长度为s'的递减子序列的末尾值的最大值要小,那么a[i]就是数列0到i部分长度为s'+1的递减子序列的末尾值中的最大值;(2) a[i]比任何长度的递减子序列的末尾值的最大值都要大,那么a[i]就是长度为1的递减子序列的最大值。

   所以,引入数组c[i]表示长度为i的递减子序列的末尾值的最大值。显然c数组必然是单调递减的。b[i]数组用于子序列的输出,b[i]表示从a[0]到a[i]且终止于a[i]的最长递减序列的长度。

 

算法复杂度:O(nlogn),对于数组c的查找使用二分查找,降低了整体的算法复杂度。

 

算法步骤:

1) 读入n和a[i].

2) 将数组c全部赋值为-1.

3) 定义变量s,初始化为1,s表示目前为止最长单调序列的长度,同时也是数组C的有效容量。c[1] = a[0].

4) 对于0到n-1的每个i:

       查找c[1]到c[s],找到一个值k满足下列几种情况:

        (1)c[k] <= a[i] 而 c[k-1] > a[i] (如果k>1)

        (2)找不到(1)中k的话,k等于s+1,并且s自加一。

       c[k] = a[i];

       b[i] = k;

5) 最后所得s即为所求值。

 

Java代码  收藏代码
  1. import java.util.Scanner;  
  2.   
  3. public class LongestSubSeq {  
  4.   
  5.     public static int bsearch(int[] a, int s, int m) {  
  6.         int low = 1;  
  7.         int high = s;  
  8.         int mid;  
  9.           
  10.         while (low < high) {  
  11.             mid = (low + high) / 2;  
  12.             if (a[mid] == m )  
  13.                 return mid;  
  14.             if (a[mid] > m)  
  15.                 low = mid + 1;  
  16.             else  
  17.                 high = mid;  
  18.         }  
  19.         if (a[low] <= m)  
  20.             return low;  
  21.         else  
  22.             return low+1;  
  23.     }  
  24.       
  25.     public static void print(int[] a, int[] b, int level, int start) {  
  26.         if (level == 0)  
  27.             return;  
  28.         int i = start;  
  29.         while (b[i] != level)  
  30.             i--;  
  31.         print(a, b, level-1, i-1);  
  32.         System.out.print(a[i] + " ");  
  33.     }  
  34.       
  35.     public static void main(String[] args) {  
  36.         Scanner in = new Scanner(System.in);  
  37.         int n = in.nextInt();  
  38.           
  39.         int[] array = new int[n];  
  40.         int[] b = new int[n];  
  41.         int[] c = new int[n+1];  
  42.           
  43.         for (int i = 0; i < n; i++) {  
  44.             array[i] = in.nextInt();  
  45.             c[i] = -1;  
  46.         }  
  47.           
  48.         int s = 1;  
  49.         int k;  
  50.         c[1] = array[0];  
  51.           
  52.         for (int i = 0; i < n; i++) {  
  53.             k = bsearch(c, s, array[i]);  
  54.             if(k > s)  
  55.                 s++;      
  56.             c[k] = array[i];  
  57.             b[i] = k;  
  58.         }  
  59.           
  60.         System.out.println("The length of longest squence is: " + s);  
  61.         System.out.print("The squence is: ");  
  62.         print(array, b, s, n-1);  
  63.     }  
  64. }  
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:45096次
    • 积分:610
    • 等级:
    • 排名:千里之外
    • 原创:14篇
    • 转载:21篇
    • 译文:0篇
    • 评论:4条
    最新评论