# Problem Statement

(Source) Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.

Find the maximum coins you can collect by bursting the balloons wisely.

Note:
(1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
(2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100

Example:

Given [3, 1, 5, 8]

Return 167

   nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167


# Analysis

This problem has an obvious indication that we can use Dynamic Programming approach to solve it. After making a decision on using dynamic programming, the next step is to find the recurrence structure of how global optimal solution can be formed by optimal solutions of sub-problems.

Let dp[i][j] denotes the optimal solution for the array slice nums[i : j + 1]. Put it in another way, dp[i][j] means the number of coins we can get when we only burst balloons indexed from i to j. At this point, we get stuck, so let us try from small input size. What if the input array is of size 1? The solution would be the number on this single balloon. Then think about what if the input array if of size 2? In this case, what matters is the last balloon we burst, right? Because the coins we get by our first bursting would be the same no matter which ballon we choose to burst first, and we have to burst twice. Now, we may formulate our Dynamic Programming Recurrence:

# k is the last balloon we choose to burst in range i...j.
for k in i...j:
dp[i][j] = max(dp[i][j], nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j])

# Solution

class Solution(object):
def maxCoins(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums:
return 0

n = len(nums)
nums.insert(0, 1)
nums.append(1)
dp = [[0 for i in xrange(n + 2)] for j in xrange(n + 2)]
dp[0][0] = 1
dp[n + 1][n + 1] = 1
for length in xrange(1, n + 1):
for i in xrange(1, n - length + 2):
j = i + length - 1
for k in xrange(i, j + 1):
dp[i][j] = max(dp[i][j], nums[i - 1] * nums[k] * nums[j + 1] + dp[i][k - 1] + dp[k + 1][j])

return dp[1][n]

• 本文已收录于以下专栏：

## LeetCode 312. Burst Balloons

• zly9923218
• 2016年04月05日 00:03
• 1861

## leetcode 312. Burst Balloons 分析

• Swartz2015
• 2016年01月22日 14:39
• 4996

## LeetCode 312. Burst Balloons（戳气球）

• jmspan
• 2016年04月21日 14:39
• 1432

## leetcode -- Burst Balloons -- 重点dp

https://leetcode.com/problems/burst-balloons/类似于矩阵连乘的问题，但与house robber问题不一样。这里是2D dp，决策变量是在那个位置burst...
• xyqzki
• 2015年12月28日 12:50
• 3668

## 【leetcode题解】【再来，动态规划】【H】【21.8】Burst Balloons

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented b...
• sscssz
• 2015年12月21日 19:19
• 577

## leetcode 312 : Burst Balloons

1、原题如下： Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it repre...
• l3368bcttqnqn
• 2015年12月05日 20:15
• 496

## Leetcode 312: Burst Balloons

Leetcode 312: Burst Balloons Given n balloons, indexed from 0 to n-1. Each balloon is painted with...
• u010045971
• 2017年08月20日 10:01
• 260

## leetcode 312 Burst Balloons

• shiyang6017
• 2015年12月04日 14:04
• 251

## LeetCode 312 - Burst Balloons

LeetCode 312 - Burst Balloons题目 Given n balloons, indexed from 0 to n-1. Each balloon is painted w...
• Gregzeng
• 2016年09月11日 17:19
• 169

## leetcode Burst Balloons

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented b...
• murmured
• 2015年11月30日 14:52
• 2539

举报原因： 您举报文章：LeetCode #312: Burst Balloons 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)