关闭

方向梯度直方图(HOG,Histogram of Gradient)学习笔记二 HOG正篇

1387人阅读 评论(0) 收藏 举报
分类:

original url: http://blog.sina.com.cn/s/blog_60e6e3d50101bkpn.html

1.介绍
HOG(Histogram of Oriented Gradient)2005CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集。

2.生成过程
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
1)图像归一化
归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能出现的各种不同的场合,检测器,必须对光照不太敏感才会有好的效果。

2)利用一阶微分计算图像梯度
图像平滑 
对于灰度图像,一般为了去除噪点,所以会先利用离散高斯平滑模板进行平滑:高斯函数在不同平滑的尺度下进行对灰度图像进行平滑操作,Dalal等实验表明在下,人体检测效果最佳(即不做高斯平滑),使得错误率缩小了约一倍。不做平滑操作,可能原因:图像时基于边缘的,平滑会降低边缘信息的对比度,从而减少图像中的信号信息。
梯度法求图像梯度
一阶微分处理一般对灰度阶梯有较强的响应  
一阶微分: 
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇


对于函数f(x,y),在其坐标(x,y)上的梯度是通过如下二维列向量定义的: 
这个向量的模值由下式给出:
 方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇

方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇

因为模值的计算开销比较大,一般可以按如下公式近似求解:
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
Dalal等人利用许多一阶微分模板进行求梯度近似值,但在实验中表明模板[-1,0,1]效果最好。
采用模板[-1,0,1]为例计算图像梯度以及方向,通过梯度模板计算水平和垂直方向的梯度分别如下:
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
其中,分别表示该像素点的水平,垂直梯度值。计算该像素点的梯度值(梯度强度)以及梯度方向
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇 对于梯度方向的范围限定,一般采用无符号的范围,故梯度方向可表示为:
 
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇

3)基于梯度幅值的方向权重投影
HOG结构
通常使用的HOG结构大致有三种:矩形HOG(简称为R-HOG),圆形HOG和中心环绕HOG。它们的单位都是Block(即块)。Dalal的试验证明矩形HOG和圆形HOG的检测效果基本一致,而环绕形HOG效果相对差一些。
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
矩形HOG块的划分:
一般一个块(Block)都由若干单元(Cell)组成,一个单元都有如干个像素点组成。
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
在每个Cell中有独立做梯度方向统计,从而以梯度方向为横轴的的直方图,前面我们已经提到过,梯度方向可取0度到180度或0度~360度,但dalal实验表明,对于人体目标检测0度~180度这种忽略度数正负级的方向范围能够取得更好的结果。然后又将这个梯度分布平均分成个方向角度(orientation bins),每个方向角度范围都会对应一个直方柱。
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
根据Dalal等人实验,在人体目标检测中,在无符号方向角度范围并将其平均分成9份(bins)能取得最好的效果,当bin的数目继续增大效果改变不明显,故一般在人体目标检测中使用bin数目为9范围0~180度的度量方式。
Block中各个参数的最终选取:
对于人体对象检测,块的大小为3×3个单元格,单元格的大小为6×6个象素时,检测效果是最好的,错误率约为10%左右。块的大小为2×2个单元格,单元格大小为8×8个象素时,也相差无几。6-8个象素宽的单元格,2-3个单元格宽的块,其错误率都在最低的一个平面上。块的尺寸太大时标准化的作用被削弱了从而导致错误率上升,而如果块的尺寸太小时,有用的信息反而会被过滤掉。
在实际应用中,在Block和Cell划分之后,对于得到各个像区域中,有时候还会为了进行一次高斯平滑,但是对于人体目标检测等问题,该步骤往往可以忽略,实际应用效果不大,估计在主要还是去除区域中噪点,因为梯度对于噪点相当敏感。
对梯度方向的投影权重方式的选取: 
对于梯度方向的加权投影,一般都采用一个权重投影函数,它可以是像素点的梯度幅值,梯度幅值的平方根或梯度幅值的平方,甚至可以使梯度幅值的省略形式,它们都能够一定程度上反应出像素上一定的边缘信息。根据Dalal等人论文的测试结果,采用梯度幅值量级本身得到的检测效果最佳,使用量级的平方根会轻微降低检测结果,而使用二值的边缘权值表示会严重降低效果(约为5%个单位10-4FPPW(False Positives Per Window))。
4)HOG特征向量归一化
对block块内的HOG特征向量进行归一化。对block块内特征向量的归一化主要是为了使特征向量空间对光照,阴影和边缘变化具有鲁棒性。还有归一化是针对每一个block进行的,一般采用的归一化函数有以下四种:
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇 在人体检测系统中进行HOG计算时一般使用L2-norm,Dalal的文章也验证了对于人体检测系统使用L2-norm的时候效果最好。
5)得出HOG最终的特征向量
方向梯度直方图(HOG,Histogram <wbr>of <wbr>Gradient)学习笔记二 <wbr>HOG正篇
3.HOG的应用:
主要用在object detection 领域,特别是行人检测,智能交通系统,当然也有文章提到把HOG用在手势识别,人脸识别等方面。

4.HOG与SIFT区别
HOG和SIFT都属于描述子,以及由于在具体操作上有很多相似的步骤,所以致使很多人误认为HOG是SIFT的一种,其实两者在使用目的和具体处理细节上是有很大的区别的。HOG与SIFT的主要区别如下:
① SIFT是基于关键点特征向量的描述。
② HOG是将图像均匀的分成相邻的小块,然后在所有的小块内统计梯度直方图。
③ SIFT需要对图像尺度空间下对像素求极值点,而HOG中不需要。
④ SIFT一般有两大步骤,第一个步骤是对图像提取特征点,而HOG不会对图像提取特征点。

5.HOG的优点:
HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;
位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;
采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响。
由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了。
而且由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。

6.HOG的缺点:
描述子生成过程冗长,导致速度慢,实时性差;
很难处理遮挡问题。
由于梯度的性质,该描述子对噪点相当敏感

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:902498次
    • 积分:9267
    • 等级:
    • 排名:第2086名
    • 原创:156篇
    • 转载:283篇
    • 译文:0篇
    • 评论:29条
    最新评论