关闭
当前搜索:

[置顶] 退役了QAQ

我的ACM真就这样结束了,EC打了铜牌,算是耻辱退役吧。全队在EC的时候都卡得不行,题意带偏,最终5题滚粗,没脸见人啦。    粘贴一下我写在QQ空间的退役贴吧。    深夜完全睡不着,上天在暗示我是时候发个退役贴吧!!!是的,结束了,EC竟然惨淡的铜牌收场,真是倍感羞愧,输得那么彻底!!!可是一切也就真的结束了,我和我的队友要真正告别ACM了,这次是我们离Final很近的一次,可是同时又是那...
阅读(153) 评论(0)

opencv人脸检测--detectMultiScale函数

opencv人脸检测–detectMultiScale函数 转载请注明出处:http://blog.csdn.net/itismelzp/article/details/50379359 首先上两张图。 现在要对上面两张图进行人脸检测。 一、Haar特征分类器介绍 Haar特征分类器就是一个XML文件,该文件中会描述人体各个部位的......
阅读(29) 评论(0)

Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate()

感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的。 stackoverflow上也有类似的讨论,在这里numpy vstack vs. column_stack。 给一个相关函数的列表: stack()    Join a sequence of arr......
阅读(14) 评论(0)

【opencv+python】图像处理之二、几何变换(仿射与投影)的应用

该系列文章为 OpenCV+Python Tutorials的学习笔记 代码托管在Github 转载请注明: http://blog.csdn.net/a352611/article/details/51418178 [三记的博客] 写在文章开始之前: 关于几何变换,常见的资料都没有把数学原理部分讲透彻,基本都是照着课本说,导致我很多地方无法彻底理解.思前想后还是把这一块分成两个部分,......
阅读(17) 评论(0)

使用Lenet5对mnist数据集进行训练和测试

参考博客:http://blog.csdn.net/gjq246/article/details/71787217?ABstrategy=codes_snippets_optimize_v3 安装模型图片导出模块 sudo pip install pydot sudo pip install graphviz sudo pip install pydot-ng sudo apt-ge......
阅读(32) 评论(0)

Ubuntu16.04的Opencv源码安装和解决无法导入cv2的问题

# step 1 # 安装依赖 (太多了,自己相应替换) sudo apt-get -y install libopencv-dev build-essential cmake git libgtk2.0-dev pkg-config python-dev python-numpy libdc1394-22 libdc1394-22-dev libjpeg-dev libpng12-dev li......
阅读(46) 评论(0)

Tensorflow生成数据的一些方法

参考博文:http://blog.csdn.net/phdat101/article/details/52442738 \quad正常情况下,使用tf.initialize_all_variables()初始化变量,在完全构建好模型并加载之后才运行这个操作。生成数据的主要方法如下: \quad1:如果需要利用已经初始化的参数给其他变量赋值,TF的变量有个initialized_value()属......
阅读(20) 评论(0)

Python机器学习实践例子&&Kagle入门 Titanic乘客生存预测模型分析(利用决策树)

Kaggle上的竞赛链接:https://www.kaggle.com/c/titanic/kernels #导入pandas用于数据分析 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt #利用pandas的read_csv模块直接从互联网加载泰坦尼克号乘客数据 titanic = ......
阅读(39) 评论(0)

Efficient Graph-Based Image Segmentation解读

    前一段时间在看Selective Search【1】的论文,其前期工作就是利用Graph-Based Image Segmentation【2】的分割算法,在深入阅读论文【2】以及查阅代码之后,深深地为作者的清晰逻辑折服。在此将自己对于这篇论文的理解记录下来。后期将继续补充对Selective Search的理解。     &nbs......
阅读(35) 评论(0)

论文笔记《Selective Search for object recognition》

周一对图像语义分割的情况大致了解些情况。从周二开始花了2天半的时间读了第一篇文章《Selective Search for object recognition 》。 文章名:《物体识别中的选择性搜索方法》 作者: J.R.R. Uijlings  University of Trento, Italy.意大利特伦托大学 发表: IJCV 2012 一、摘要......
阅读(27) 评论(0)

深度学习(十八)基于R-CNN的物体检测

基于R-CNN的物体检测原文地址:http://blog.csdn.net/hjimce/article/details/50187029作者:hjimce一、相关理论   本篇博文主要讲解2014年CVPR上的经典paper:《Rich feature hierarchies for Accurate Object Detection and Segmen......
阅读(35) 评论(0)

Tensorflow 实现Lenet神经网络

直接上源码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("../data/", one_hot = True) #读图片数据集 sess = tf.InteractiveSession() #创建se......
阅读(33) 评论(0)

Tensoflow 把自己的图片生成向量

在Python2下运行的代码 我先把工程目录截图放上来: import os import numpy as np import cv2 def imgTodata(path, imgCount = 128, weight = 1960, height = 960, channel = 3): pathDir = list(os.listdir(path)) # [...
阅读(30) 评论(0)

Tensoflow实现第一个神经网络-卷积神经网络

参考博文:http://blog.csdn.net/xukaiwen_2016/article/details/70880694 对于卷积神经网络的基础知识这上面说的很清楚,我第一次写Tensoflow几乎是模仿着写的,并且把学习率设得比较低,最后得到了比较好的训练结果,然后贴上有注释的代码 #encoding utf-8 from tensorflow.examples.tutorial......
阅读(62) 评论(0)

tf.nn.max_pool实现池化操作

原文:http://blog.csdn.net/mao_xiao_feng/article/details/53453926 max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考【TensorFlow】tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(value, ksize, strides, padding, name...
阅读(46) 评论(0)

TF-卷积函数 tf.nn.conv2d 介绍

原文:https://www.cnblogs.com/qggg/p/6832342.html tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=...
阅读(32) 评论(0)

卷积姿态机(单人姿态识别)论文阅读 CVPR2016

项目代码:https://github.com/CMU-Perceptual-Computing-Lab/convolutional-pose-machines-release 论文原文:https://arxiv.org/abs/1602.00134 推荐一篇写的特别好的总结博文:http://blog.csdn.net/zimenglan_sysu/article/details/520...
阅读(32) 评论(0)

RMPE 区域多人姿态估计论文翻译 CVPR 2017

官网:http://mvig.sjtu.edu.cn/research/alphapose.html 论文原文:https://arxiv.org/abs/1612.00137 摘要 复杂环境下的人姿势估计是具有挑战性的。虽然最先进的人体探测器已经表现出良好的性能,但是在定位和识别方面的小错误是不可避免的。这些错误可能会导致单人姿势估计器(SPPE)的失败,尤其是对于完全依赖于人体检测结...
阅读(44) 评论(0)

Caffe LeNet网络模型理解

Caffe的模型具有两个重要的参数文件:网络模型和参数配置,分别是*.prototxt和*.solver.prototxt 先上图: //输入层 layer{ name: "mnist" type: "Data" //input top: "data" top: "label" //数据输入定义:包含训练和测试数据 include{ phase:TR...
阅读(80) 评论(0)

NG 机器学习章节1和章节2

吴恩达机器学习 初识机器学习 机器学习在日常生活中很常见,例如社交网络可以自动圈出你的好友,邮箱可以自动过滤垃圾邮件。机器学习源于AI(人工智能)。它赋予计算机一种新的能力:自我学习,而非依靠程序。机器学习在数据挖掘,识别手写,大部分的NLP,计算机视觉,个性化自定义的程序,理解人如何进行学习。      什么是机器学习。  如果计算机程序执行某项任务(Task T)的绩效(Perform...
阅读(93) 评论(0)

windows7 下 Caffe训练Cifar 数据集

Caffe的配置就不说了,这里默认配置好了Caffe,且你的系统是windows,我没有显卡,只能在CPU模式下训练,这个也很简单,改几个参数就可以了,待会要说。 1,介绍一下Cifar数据集 CIFAR-10数据库:60000张32*32大小的彩色图像共计10类(airplane、automobile、 bird、cat 、deer、dog、frog、 horse、ship、truck)...
阅读(47) 评论(0)
1295条 共65页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:413345次
    • 积分:16505
    • 等级:
    • 排名:第744名
    • 原创:1274篇
    • 转载:21篇
    • 译文:0篇
    • 评论:61条
    博客专栏
    文章分类