# 102. Unique Paths II

88人阅读 评论(0)

-63. Unique Paths II My Submissions QuestionEditorial Solution
Total Accepted: 67444 Total Submissions: 228395 Difficulty: Medium

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.

Note: m and n will be at most 100.

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=obstacleGrid.size(),n=obstacleGrid[0].size();
vector<vector<int>> f(m,vector<int>(n));
f[0][0]=1;
for(int i=0;i<m;++i){
for(int j=0;j<n;++j){
if(obstacleGrid[i][j])f[i][j]=0;
if(i>0&&j>0&&!obstacleGrid[i][j])f[i][j]=f[i-1][j]+f[i][j-1];
else if(i==0&&j!=0&&!obstacleGrid[i][j])f[i][j]=f[i][j-1];
else if(j==0&&i!=0&&!obstacleGrid[i][j])f[i][j]=f[i-1][j];
}
}
return f[m-1][n-1];
}
};
0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：752265次
• 积分：9427
• 等级：
• 排名：第1910名
• 原创：197篇
• 转载：157篇
• 译文：2篇
• 评论：12条
评论排行
最新评论