为什么 GNU grep 如此之快?


编注:这是 GNU grep 的原作者 Mike Haertel 在 FreeBSD 邮件列表中对 “GNU grep 为什么比 BSD grep 要快” 所做的回答,下面是邮件正文内容:


Gabor 您好,


我是 GNU grep 的原作者,同时也是一名 FreeBSD 用户,不过我一直使用的是 - stable 版本(也就是更老的版本),而没怎么关注 - current 版本。


但是,当我无意间翻阅 - current 版的邮件列表时,偶然发现了一些关于 BSD grep 与 GNU grep 性能的讨论,你可能也注意到了那些讨论。


不管怎么说,仅供参考吧,下面是一些简单的总结,关于为什么 GNU grep 如此之快。或许你能借鉴其中的一些思想运用到 BSD grep 中去。


#技巧 1:GNU grep 之所以快是因为它并不会去检查输入中的每一个字节。


#技巧 2:GNU grep 之所以快是因为它对那些的确需要检查的每个字节都执行非常少的指令(操作)。


GNU grep 使用了非常著名的 Boyer-Moore 算法(译者注:BM 算法,是一种非常高效的字符串搜索算法,一般情况下,比 KMP 算法快 3-5 倍,具体可查看这篇讲解非常详细的文章:grep 之字符串搜索算法 Boyer-Moore 由浅入深(比 KMP 快 3-5 倍)),该算法首先从目标字符串的最后一个字符开始查找,并且使用一个查找表,它可以在发现一个不匹配字符之后,计算出可以跳过多少个输入字符并继续查找。


GNU grep 还展开了 Boyer-Moore 算法的内部循环,并建立了一个 Boyer-Moore 的 delta 表,这样它就不需要在每一个展开的步骤进行循环退出判断了。这样的结果就是,在极限情况下(in the limit),GNU grep 在需要检查的每一个输入字节上所执行的 x86 指令不会超过 3 条(并且还跳过了许多字节)。


你可以看看由 Andrew Hume 和 Daniel Sunday 1991 年 11 月在 “Software Practice & Experience” 上发表的论文 “Fast String Searching”,该文很好的讨论了 Boyer-Moore 算法的实现技巧,该文有免费的 PDF 在线版(译者注:点这里查看或下载)。


一旦有了快速搜索,这时你会发现也需要同样快速的输入。


GNU grep 使用了原生 Unix 输入系统调用并避免了在读取后对数据进行拷贝。


而且,GNU grep 还避免了对输入进行分行,查找换行符会让 grep 减慢好几倍,因为要找换行符你就必须查看每个字节!


所以 GNU grep 没有使用基于行的输入,而是将原数据读入到一个大的缓冲区 buffer,用 Boyer-Moore 算法对这个缓冲区进行搜索,只有在发现一个匹配之后才会去查找最近的换行符(某些命令参数,比如 - n 会禁止这种优化)。


最后,当我还在维护 GNU grep 的时候(15 + 年前……),GNU grep 也尝试做一些非常困难的事情使内核也能避免处理输入的每个字节,比如使用 mmap() 而不是 read() 来进行文件输入。当时,用 read() 会使大部分 Unix 版本造成一些额外的拷贝。因为我已经不再 GNU grep 了,所以似乎 mmap 已经不再默认使用了,但是你仍然可以通过参数–mmap 来启用它,至少在文件系统的 buffer 已经缓存了你的数据的情况下,mmap 仍然要快一些:


$ time sh -c 'find . -type f -print | xargs grep -l 123456789abcdef'

  real 0m1.530s

  user 0m0.230s

  sys 0m1.357s

$ time sh -c 'find . -type f -print | xargs grep --mmap -l 123456789abcdef'

  real 0m1.201s

  user 0m0.330s

  sys 0m0.929s


[这里使用的输入是一个 648M 的 MH 邮件文件夹,包含大约 41000 条信息]


所以即使在今天,使用–mmap 仍然可以提速 20% 以上。


总结:


– 使用 Boyer-Moore 算法(并且展开它的内层循环)。


– 使用原生系统调用来建立你的缓冲输入,避免在搜索之前拷贝输入字节。(无论如何,最好使用缓冲输出,因为在 grep 的常用场景中,输出的要比输入的少,所以输出缓冲拷贝的开销要小,并且可以节省许多这样小的无缓冲写操作。)


– 在找到一个匹配之前,不要查找换行符。


– 尝试做一些设置(比如页面对齐缓冲区,按页大小来读取块,选择性的使用 mmap),这样可以使内核避免拷贝字节。


让程序变得更快的关键就是让它们做更少的事情。;-)


致礼


Mike

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值