单调队列初步

一直弄不明白单调队列是什么,在网上也找不到易懂的介绍。最后结合别人博客上的介绍和程序看才理解是怎么回事。

我们从最简单的问题开始:

给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.

要求:

      f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1

问题的另一种描述就是用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值。

解法一:

很直观的一种解法,那就是从数列的开头,将窗放上去,然后找到这最开始的k个数的最大值,然后窗最后移一个单元,继续找到k个数中的最大值。

这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(N*k)。

那么有没有更快一点的算法呢?

解法二:

我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面k-1个数其它在算f(i-1)的时候我们就比较过了。那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调递减队列。

单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首元素删除。

 

从上面的介绍当中,我们知道,单调队列与队列唯一的不同就在于它不仅要保存元素的值,而且要保存元素的索引(当然在实际应用中我们可以只需要保存索引,而通过索引间接找到当前索引的值)。

为了让读者更明白一点,我举个简单的例子。

假设数列为:8,7,12,5,16,9,17,2,4,6.N=10,k=3.

那么我们构造一个长度为3的单调递减队列:

首先,那8和它的索引0放入队列中,我们用(8,0)表示,每一步插入元素时队列中的元素如下:

0:插入8,队列为:(8,0)

1:插入7,队列为:(8,0),(7,1)

2:插入12,队列为:(12,2)

3:插入5,队列为:(12,2),(5,3)

4:插入16,队列为:(16,4)

5:插入9,队列为:(16,4),(9,5)

。。。。依此类推

那么f(i)就是第i步时队列当中的首元素:8,8,12,12,16,16,。。。

程序代码如下:

 

 

### 数据结构与算法中的凹凸性 #### 凹凸性的定义 在数学分析中,函数的凹凸性描述的是曲线弯曲的方向。对于给定区间内的连续二阶可导函数 \( f(x) \),如果其二阶导数 \( f''(x) > 0 \),则该函数在此区间内为严格凸;反之,若 \( f''(x) < 0 \),则此函数为严格凹。 然而,在计算机科学领域特别是数据结构和算法设计方面,“凹凸性”的概念更多体现在某些特定应用场景下对数值变化趋势的要求上: - **单调栈**:利用栈来维护一组具有某种顺序关系的数据项(如递增或递减),从而快速判断新加入元素相对于已有集合的位置特性; - **动态规划中的决策路径优化**:一些经典的DP题目会涉及到求解最短路经、最小费用等问题时,可能会遇到需要考虑局部最优解组合成全局最优解的情况,此时往往可以通过证明目标函数满足一定的凹凸性质来进行剪枝操作以减少不必要的状态转移计算量[^1]。 #### 应用实例 ##### 单调队列/堆的应用场景 在一个长度固定的滑动窗口里寻找最大值或者最小值问题中,可以采用双端队列作为辅助工具,保持内部存储着当前可见范围内按降序排列的关键码序列。每当有新的候选者进入视野时就将其依次同队尾成员比较直至找到合适位置插入进去,并把那些已经超出界限的老记录弹出去。由于每次调整都遵循先进先出原则加上维持有序性不变的特点使得查询复杂度稳定于O(nlogn)[^2]。 ```cpp deque<int> dq; for(int i=0;i<n;++i){ while(!dq.empty() && a[dq.back()]<=a[i]) dq.pop_back(); dq.push_back(i); if(dq.front()<=(i-k)) dq.pop_front(); // remove out-of-bound elements } ``` ##### 动态规划中的应用 假设存在这样一个背包容量有限制的问题——即每种物品都有固定的价值v[]以及重量w[],现在要挑选若干件放入其中让总价值尽可能高但不超过限定载重m。这里就可以借助贪心策略配合优先级队列完成初步筛选工作之后再运用分治法细究剩余可能性空间里的极值分布规律进而得出结论。而在这个过程中为了加快收敛速度通常还会引入松弛变量r表示已知最好方案下的预期收益增量期望值,随着迭代次数增加逐渐逼近真实答案直到两者差距小于预设阈值为止停止运算返回结果。 ```python def knapsack(weights, values, capacity): n = len(values) dp = [[0]*(capacity+1) for _ in range(n+1)] for i in range(1,n+1): wi,vi = weights[i-1],values[i-1] for j in range(capacity,-1,-1): if j >= wi: dp[i][j]= max(dp[i-1] weights=[2,3,4,5] value =[3,4,8,8] print(knapsack(weights,value,5)) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值