
Machine Learning
文章平均质量分 89
jiang1st
北京邮电大学博士。
展开
-
图˙谱˙马尔可夫过程˙聚类结构----by林达华
这又是林达华的一篇好文,将四个概念在某个方面解释的很清楚,特别是特征值和特征向量的意义,让人豁然开朗。 原文已经找不到了,好像是因为林达华原来的live博客已经失效,能找到的只有网上转载的文章(本来还想把他的博客看个遍)。林本人的数学功底之强,有时候会让我们这些搞CV、ML的人趁还在学校,重头把一些数学学一遍。不过想想学校所开设的课程实在是屎(老师和学生们都是混),也就想想罢了转载 2013-10-08 10:03:13 · 8975 阅读 · 2 评论 -
机器学习是什么
不久以前读的一篇好文,主要是讲机器学习到底是属于什么学科或者研究领域,同时也介绍到了ML与AI之间的关系。作者是南京大学的周志华老师。废话少说,直接上文章。------------------------------------------------------- 机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。 不少人其实并没转载 2014-01-22 10:48:02 · 4636 阅读 · 1 评论 -
聚类(2)——层次聚类 Hierarchical Clustering
聚类系列:聚类(序)----监督学习与无监督学习聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering-------------------------------- 不管是GMM,还原创 2012-06-23 11:09:39 · 110793 阅读 · 13 评论 -
Spatial Pyramid Matching 小结
本文介绍了SPM的细节,以及匹配问题与分类问题之间的联系。原创 2013-07-30 11:22:32 · 39582 阅读 · 45 评论 -
计算机视觉、机器学习相关领域论文和源代码大集合
原文转自:http://blog.csdn.net/zouxy09/article/details/8550952原作者是zouxy09,之前已经转载了他的好几篇文章了,比如LBP、HOG。这次转载是在寻找unsupervised image segmentation的方法及源代码的时候搜寻到了这里,找到了Efficient Graph-based Image Segmentation 的转载 2013-09-09 10:49:29 · 6531 阅读 · 0 评论 -
Managing Your Advisor -- Creativity and grad school survival advice from Professor Nick Feamster
With the new academic term almost upon us, several of my students started to put together a list of practical advice for incoming students—including various niceties such as how to gain access to the转载 2014-08-17 21:37:09 · 2265 阅读 · 0 评论 -
降维(一)----说说主成分分析(PCA)的源头
降维系列:降维(一)----说说主成分分析(PCA)的源头降维(二)----Laplacian Eigenmaps--------------------- 主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清。今天终于把整个过程整理出来,方便自己学习,也和大家交流。原创 2013-05-16 19:21:00 · 24613 阅读 · 11 评论 -
一般物体检测--Binarized Normed Gradients for Objectness Estimation at 300fps
前一段时间很多人在网上传程明明在CVPR14年上即将发表的Objectness文章,Project Page在这里,和这里。最近,正好想用一般物体检测做点事情,上周也在实验室做了一个这个方面的报告,今天打算在博客上总结一下。原创 2014-04-06 14:34:58 · 16599 阅读 · 73 评论 -
聚类(序)——监督学习与无监督学习
什么时候应该采用监督学习,什么时候应该采用非监督学习呢?原创 2012-06-11 22:29:34 · 37546 阅读 · 7 评论 -
稀疏模型与结构性稀疏模型
图像表示往往基于如下最小化问题:原创 2013-09-26 23:35:48 · 19305 阅读 · 10 评论 -
聚类(1)——混合高斯模型 Gaussian Mixture Model
聚类系列:聚类(序)----监督学习与无监督学习聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering-------------------------------- 聚原创 2012-06-14 17:57:54 · 69345 阅读 · 19 评论 -
降维(二)----Laplacian Eigenmaps
降维系列:降维(一)----说说主成分分析(PCA)的源头降维(二)----Laplacian Eigenmaps--------------------- 前一篇文章中介绍了主成分分析。PCA的降维原则是最小化投影损失,或者是最大化保留投影后数据的方差。在谈到其缺点的时候,我们说这一目标并不一定有助于数据的分类,换句话说,原本在高维空间中属原创 2013-05-18 21:05:25 · 26972 阅读 · 11 评论 -
机器学习的数学基础(1)--Dirichlet分布
这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结。基础知识:conjugate priors共轭先验 共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式。它极大地简化了贝叶斯分析。 如何解释这句话。由于 P(u|D) = p(D|u)p(u)/p(D) (1.0式) 其中D是原创 2013-04-23 21:52:26 · 40083 阅读 · 6 评论 -
迁移学习&自我学习
最近在看Ng的深度学习教程,看到self-taught learning的时候,对一些概念感到很陌生。作为还清技术债的一个环节,用半个下午的时间简单搜了下几个名词,以后如果会用到的话再深入去看。 监督学习在前一篇博客中讨论过了,这里主要介绍下迁移学习、自我学习。因为监督学习需要大量训练样本为前提,同时对训练样本的要求特别严格,要求训练样本与测试样本来自于同一分布。要是满足不了这要原创 2013-05-08 17:52:20 · 13042 阅读 · 0 评论 -
Dirichlet Process 和 Hierarchical Dirichlet Process
最近在看Dirichlet分布以及Dirichlet过程,因为最近感觉Dirichlet过程在聚类以及一些贝叶斯模型上使用很多。参考了很多资料,其中这篇博客介绍HDP算是比较清楚的了,原文链接是 http://hi.baidu.com/zentopus/item/46a622f5ef13e4c5a835a28e另外关于Dirichlet Process还有以下文献可以参考:1. h转载 2013-05-12 15:41:52 · 6556 阅读 · 2 评论 -
Li Fei-fei写给她学生的一封信,如何做好研究以及写好PAPER
在微博上看到的,读完还是有些收获的,首先是端正做research的态度。我是从这里看到的:http://www.vjianke.com/ZM0BC.clip ---------------------------------------以下是原文--------------------------------------------- De-mystifying Good Re转载 2013-07-18 18:21:35 · 6372 阅读 · 3 评论 -
特征选择和特征学习中的过完备
ScSPM的论文中提到了码书的过完备(over-complete)。一开始没有太在意过完备有什么问题,今天想了想把这个概念弄明白了。原创 2013-08-14 19:39:47 · 8275 阅读 · 4 评论 -
理解sparse coding
本文的内容主要来自余凯老师在CVPR2012上给的Tutorial。前面在总结ScSPM和LLC的时候,引用了很多Tutorial上的图片。其实这个Tutorial感觉写的挺好的,所以这次把它大致用自己的语言描述一下。不过稀疏编码是前两年比较火的东西,现在火的是deep learning了。1、What is sparse coding? 稀疏编码的提出,最早是用于解释人脑的视翻译 2013-08-11 19:54:02 · 41234 阅读 · 8 评论 -
图像的稀疏表示——ScSPM和LLC的总结
上一篇提到了SPM。这篇博客打算把ScSPM和LLC一起总结了。ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。从BOW,到BOW+SPM原创 2013-08-09 09:52:05 · 30217 阅读 · 17 评论