机器学习是什么

转载 2014年01月22日 10:48:02

不久以前读的一篇好文,主要是讲机器学习到底是属于什么学科或者研究领域,同时也介绍到了ML与AI之间的关系。作者是南京大学的周志华老师。废话少说,直接上文章。

-------------------------------------------------------


      机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。

      不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。

      问题是,真有个“大伙儿”吗?就不会是“两伙儿”、“三伙儿”?如果有“几伙儿”,那到底该跟着“哪伙儿”走呢?

      很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化、完全不同的价值观的群体,称为machine learning "communities"也许更合适一些。


      第一个community,是把机器学习看作人工智能分支的一个群体,这群人的主体是计算机科学家。现在的“机器学习研究者”可能很少有人读过1983年出的“Machine Learning: An Artificial Intelligence Approach”这本书。这本书的出版标志着机器学习成为人工智能中一个独立的领域。它其实是一部集早期机器学习研究之大成的文集,收罗了若干先贤(例 如Herbert Simon,那位把诺贝尔奖、图灵奖以及各种各样和他相关的奖几乎拿遍了的科学天才)的大作,主编是Ryszard S. Michalski(此君已去世多年了,他可算是机器学习的奠基人之一)、Jaime G. Carbonell(此君曾是Springer的LNAI的总编)、Tom Mitchell(此君是CMU机器学习系首任系主任、著名教材的作者,机器学习界没人不知道他吧)。Machine Learning杂志的创刊,正是这群人努力的结果。这本书值得一读。虽然技术手段早就日新月异了,但有一些深刻的思想现在并没有过时。各个学科领域总有 不少东西,换了新装之后又粉墨登场,现在热火朝天的transfer learning,其实就是learning by analogy的升级版。

      人工智能的研究从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,是有一条自然、清晰的脉络(打个现在火热的比方,从设计特征到学习特征,转载者注)。人工智能出身的机器学习研究者,绝大部分是把机器学习作为实现人工智能的一个途径,正如1983年的书名那样。他们关注的是人工智能中的问题,希望以机器学习为手段,但具体采用什么样的学习手段,是基于统计的、代数的、还是逻辑的、几何的,他们并不care。

      这群人可能对统计学习目前dominating的地位未必满意。靠统计学习是不可能解决人工智能中大部分问题的,如果统计学习压制了对其他手段的研究,可能不是好事。这群人往往也不care在文章里show自己的数学水平,甚至可能是以简化表达自己的思想为荣。人工智能问题不是数学问题,甚至未必是依靠数学能够解决的问题。人工智能中许多事情的难处,往往在于我们不知道困难的本质在哪里,不知道“问题”在哪里。一旦“问题”清楚了,解决起来可能并不困难。


      第二个community,是把机器学习看作“应用统计学”的一个群体,这群人的主体是统计学家。

      和纯数学相比,统计学不太“干净”,不少数学家甚至拒绝承认统计学是数学。但如果和人工智能相比,统计学就太干净了,统计学研究的问题是清楚的,不象人工智能那样,连问题到底在哪里都不知道。在相当长时间里,统计学家和机器学习一直保持着距离。慢慢地,不少统计学家逐渐意识到,统计学本来就该面向应用,而机器学习天生就是一个很好的切入点。因为机器学习虽然用到各种各样的数学,但要分析大 量数据中蕴涵的规律,统计学是必不可少的。统计学出身的机器学习研究者,绝大部分是把机器学习当作应用统计学。他们关注的是如何把统计学中的理论和方法变 成可以在计算机上有效实现的算法,至于这样的算法对人工智能中的什么问题有用,他们并不care。

      这群人可能对人工智能毫无兴趣,在他们眼中,机器学习就是统计学习,是统计学比较偏向应用的一个分支,充其量是统计学与计算机科学的交叉。这群人对统计学习之外的学习手段往往是排斥的,这很自然,基于代数的、逻辑的、几何的学习,很难纳入统计学的范畴。

      两个群体的文化和价值观完全不同。第一个群体认为好的工作,第二个群体可能觉得没有技术含量甚至读到第一个群体的论文时,你会觉得这很“水”,这没什么太大的contribution。这表明你已经不知不觉受第二类群体影响了。转载者注)。但第一个群体可能恰恰认为,简单的才好,正因为很好地抓住了问题本质,所以问题变得容易解决。第二个群体欣赏的工作,第一个群体可能觉得是故弄玄虚,看不出他想解决什么人工智能问题,根本就不是在搞人工智能、搞计算机,但别人本来也没说自己是在“搞人工智能”、“搞计算机”,本来就不是在为人工智能做研究。


      两个群体各有其存在的意义,应该宽容一点,不需要去互较什么短长。但是既然顶着Machine Learning这个帽子的不是“一伙儿”,而是“两伙儿”,那么要“跟进”的新人就要谨慎了,先搞清楚自己更喜欢“哪伙儿”。

      引两位著名学者的话结尾,一位是人工智能大奖得主、一位是统计学习大家,名字我不说了,省得惹麻烦:


      “I do not come to AI to do statistics”

      “I do not have interest in AI”

数据挖掘,机器学习,自然语言处理这三者是什么关系?

数据挖掘与机器学习是两个不同的概念; 数据挖掘中使用到机器学习的各种工具,而自然语言处理也是是一种机器学习的方式,属于数据挖掘的范畴。 数据挖掘(英语:Data mining),又译为资料探勘、数据采...

各种机器学习的应用场景分别是什么

作者:xyzh 链接:https://www.zhihu.com/question/26726794/answer/151282052 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,...

通过身边小事解释机器学习是什么?

一个给不知道机器学习是什么东西的人讲的一个挺不错的例子,方法。 今天从 quora 上看了一个问题:如何给不是 CS 的学生,给不知道机器学习和数据挖掘的学生,讲明白什么是机器学习和数据挖掘...

机器学习有很多关于核函数的说法,什么是核函数?核函数的作用是什么?

转自知乎 详细的公式什么的,网络上搜索kernel function, kernel methods 有很多,我就不仔细说了,简单地说说背后的intuition。 intuition也很简单,比如...

各种机器学习的应用场景分别是什么?

没有最好的分类器,只有最合适的分类器。

机器学习、统计分析、数据挖掘、神经网络、人工智能、模式识别之间的关系是什么?

机器学习、统计分析、数据挖掘、神经网络、人工智能、模式识别之间的关系是什么?本版精华热门专题windows2008 system32\config\systemprofile\Desktop报错404...

谷歌开源机器学习,这个狂拽炫酷吊炸天的技术究竟是什么玩意?

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能...

机器学习是什么--周志华

机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。 不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。 问题是,真有个“大伙儿”吗?就...

各种机器学习的应用场景分别是什么

作者:xyzh 链接:https://www.zhihu.com/question/26726794/answer/151282052 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,...

是什么阻碍了你的机器学习目标?

我收到过许多想开始学习机器学习的开发者和学生的邮件。我问他们的第一个问题是:是什么阻止了你开始学习? 我试图找出让他们挣扎的核心原因,大多数时候都是一些自我限制的想法在阻止他们前进。 这篇...
  • Eaton18
  • Eaton18
  • 2015年04月22日 14:13
  • 322
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:机器学习是什么
举报原因:
原因补充:

(最多只允许输入30个字)