局部特征(2)——Harris角点

原创 2012年06月03日 20:30:50
局部特征系列:

 --------------------------------------------------------------      

Highlight: 感谢9L同学的推荐,有更优秀的文章讲解检测子:http://www.cnblogs.com/ronny/p/4009425.html  另外本人很久没再研究检测子了,本专题不再update。


        在入门篇中偶尔谈到了Harris Corner,在这里我们就重点聊一聊Harris Corner。

       Harris Corner是最典型的角点检测子Corner Detector角点经常被检测在边缘的交界处、被遮挡的边缘、纹理性很强的部分。满足这些条件一般都是稳定的、重复性比较高的点,所以实际上他们是不是角点并不重要(因为我们的目标就是找一些稳定、重复性高的点以作为特征点)。

       Harris Corner基于二阶矩阵:

       

        这个矩阵描述了局部邻域内梯度的分布情况。矩阵的两个特征值可以用来描述两个主要方向上信号的变化,因此特征值可以用来判决是否为特征点。Harris采用的判别方法是:

    

       显而易见,cornerness的值越大,对应的两个特征值都应该很大,其中λ取0.04,是为了抑制比较明显的直线。最后对整幅图像得到的cornerness做一个非极大抑制,得到最后的特征点。Harris角点具有的优点是平移不变、旋转不变,能克服一定光照变化。可以先从一个例子上观察Harris Corner实现的过程:

        

        现在有几个问题:首先3.1式矩阵是如何推导出现的另外一个问题是为什么3.4式用来决定是否为角点(即为何3.1式的两个特征值可以用来描述两个主要方向上信号的变化强度)。

       

  • 第一个问题的解答
    要知道为什么3.1可以作为这个矩阵,我们了解一下具体怎么推出这个式子的,那这又要从Moravec算子说起,步骤如下:
    • 将要判断的点置于一个3*35*5的图像块的中心,如下图用红色的线环绕的图像块。
    • 将红色的框朝8个方向移动一格,得到蓝色的框(下图为向右上角移动)。导致一个缺点:响应是各向异性的(啥意思?)
    • 将红色的框和蓝色的框的相同坐标值的点的像素值相减,并求平方和,可以得到8个值。
    • 8个值中的最小的值作为角点像素的变化值。(因为角点应该在xy方向上变化都比较大;而在边缘上只可能一个方向大、另一个方向小)
    • 求出每一个像素点的角点像素变化值,在局部图像块中,该值最大的点为角点。

        Harris算子将Moravec算子做了两个推广:

       1)用像素的变化梯度代替像素值相减引入高斯窗函数(举个x方向上变化的例子为证)。

            引入高斯窗是为了滤除噪声的干扰。

[-1,0,1]:x方向上的偏导,[-1,0,1]T:y方向上的偏导。

 

        2)推广出了一个公式这样可以计算任意方向上的像素值变化,而不在是8个固定的方向。

(这里的u、v表示x/y方向的位移)

        因为Vuv(x,y)的最大值才是这个点需要被考虑的值,因此我们重写以上表达式:

                   (3.5)

        看到M矩阵的形式了么?这就是Harris算子的那个原始矩阵,我想推到这里,你也就应该了解Harris矩阵为什么是这样子的了。

 

  • 第二个问题:为什么3.4可以用来描述是否为角点。

    

       那么为什么3.1式的两个特征值能够反映数据在两个方向的变化程度?

       注意(3.5)式的目标函数(最大化Vuv)。而这个目标函数与PCA的目标函数(通过最大化变化推导PCA的投影方程时)完全一致(如果你记不清这个过程,请你看这里,重点看公式2及之后的文字描述。另外我在这里的留言板中也回答了类似的问题)。特征值是十分重要的概念,不仅在这里以及PCA上,在Laplacian EigenmapsLDA上也相应地被使用到。

      

       那么又为什么3.4式取值较大时能保证α和β的取值都很大呢?

             a)   αβ一个大而另一个小时,det小而trace大,‘-’号就能使cornerness小(而‘+’号却使cornerness依然很大,所以必须是减号而不是加号);

             b)   α和β都很小时,显然cornerness很小;

             c)   α和β都很大时(比参数λ更大),此时det会更大于trace从而使cornerness很大。

       可以参考这样一个图:描述了不同纹理下α和β的取值情况(其中α和β是矩阵M的两个特征值):

    • 没有什么纹理的情况下,两个值都很小(很小的正值)
    • 边缘的点,一个值大,另外一个值小(由于k取了很小的值,所以3.4的结果为一个小负值)
    • 角点:两个值都比较大(比较大的正值)

        这样,当我们把目标函数定义为3.4式的时候,得到的结果就会尽力满足两个特征值都比较大了。当然,除此之外,还有Harmonic mean等方式实现更理想的组合方式达到检测出的两个特征值都尽可能大。

       


 

       最后附上检测效果图(右图进行了旋转)

    两个图可以看出来Harris corner是rotation invariant,但是不是scale invariant。

------------------------------

jiang1st2010

原文地址:http://blog.csdn.net/jiang1st2010/article/details/7628665

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图像处理之角点检测算法(Harris Corner Detection)

Harris特征具有旋转不变性在很多方面应用广泛。演示图像处理 中非常重要的特征提取算法Harris角点检测算法,从原理解释到 代码实现包含了图像编程中各种基本技巧与常见各种处理手段。

Harris特征、SIFT特征、SURF特征

基于特征点的图像匹配是图像处理中经常会遇到的问题,手动选取特征点太麻烦了。比较经典常用的特征点自动提取的办法有Harris特征、SIFT特征、SURF特征。 先介绍利用SURF特征的特征描述办法,其操...

局部特征(1)——入门篇

局部特征系列: 局部特征(1)——入门篇 局部特征(2)——Harris角点 局部特征(3)——SURF特征总结 局部特征(4)——SIFT和SURF的比较 局部特征(5)——如何利...

【特征检测】FAST特征点检测算法

Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FA...

Harris角点检测原理分析

原文自:http://blog.csdn.net/yudingjun0611/article/details/7991601 转注:NewThinker_wei: 加了一些原理性的注解,注解部分在文...

Harris算子介绍

Harris算子介绍: 该算子是C.Harris和M.J.Stephens在1988年提出的一种点特征提取算子。这种算子受信号处理中自相关函数的启发,可以给出图像中某一像素点的自相关矩阵肘,其特征值...

Harris角点检测

在上一节我们已介绍Moravec检测器,它仅仅在8个方向(水平、垂直和四个对角方向)计算灰度变化,为了对其扩展,有必要设计一个可以在任何方向对灰度变化进行测度的函数。1988年,Harris和Step...
  • utimes
  • utimes
  • 2013-10-22 23:37
  • 6534

opencv学习_12 (harris角点检测)

一:原理: Harris角点检测最直观的解释是:在任意两个相互垂直的方向上,都有较大变化的点。---harris 在A combined corner and edge detector 这篇文章中提...

Opencv2系列学习笔记5(检测Harris角点)

在计算机视觉中,兴趣点(也叫关键点或者特征点)的概念被大量用于解决物体识别、图像匹配、视觉跟踪、三维重建等问题。它依赖于这个想法,即不再观察整副图像,而是选择某些特殊的点,然后对它们执行局部分析。如果...

Harris算子总结

一. Harris基本原理 Harris算子是一种基于信号的点特征提取算子,它是对Moravec算子的改进。其基本思想是:在图像中设计一个局部检 测窗口,当该窗口沿各个方向做微小移动时,考察窗口的平均...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)