骑士旅游

转载 2012年02月28日 23:19:29
骑士旅游(Knight tour)在十八世纪初倍受数学家与拼图迷的注意,它什么时候被提出已不可考,骑士的走法为西洋棋的走法,骑士可以由任一个位置出发,它要如何走完所有的位置?
  骑士的走法,基本上可以使用递归来解决,但是纯綷的递归在维度大时相当没有效率,一个聪明的解法由J.C. Warnsdorff在1823年提出,简单的说,先将最难的位置走完,接下来的路就宽广了,骑士所要走的下一步,「为下一步再选择时,所能走的步数最少的一步。」,使用这个方法,在不使用递归的情况下,可以有较高的机率找出走法(找不到走法的机会也是有的)。

  在一个n m 格子的棋盘上,有一只国际象棋的骑士在棋盘的左下角,骑士只能根据象棋的规则进行移动,要么横向跳动一格纵向跳动两格,要么纵向跳动一格横向跳动两格。 例如, n=4,m=3 时,若骑士在格子(2;1) ,则骑士只能移入下面格子:(1;3),(3;3) 或 (4;2);对于给定正整数n,m,I,j值 (m,n<=50,I<=n,j<=m) ,你要测算出从初始位置(1;1) 到格子(i;j)最少需要多少次移动。如果不可能到达目标位置,则输出"NEVAR"。

#include <stdio.h>
int board[8][8]={0};
int travel(int x,int y);
int main(void)
{
	int starx,stary;
	int i,j;
	printf("输入起点:");
	scanf("%d%d",&starx,&stary);
	if (travel(starx,stary))
	{
		printf("游历完成!\n");

	}
	else
	{
		printf("游历失败!\n");
	}
	for (i=0;i<8;i++)
	{
		for (j=0;j<8;j++)
		{
			printf("%2d",board[i][j]);
		}
		putchar('\n');
	}
	return 0;
}
int travel(int x,int y)
{//对应骑士可走的八个方向
	int ktmove1[8]={-2,-1,1,2,2,1,-1,-2};
	int ktmove2[8]={1,2,2,1,-1,-2,-2,-1};
//测试下一步的出路
	int nexti[8]={0};
	int nextj[8]={0};
//记录出路的个数
	int exists[8]={0};
	int i,j,k,m,l;
	int tmpi,tmpj;
	int count,min,tmp;
	i=x;
	j=y;
	board[i][j]=1;
	for (m=2;m<=64;m++)
	{
		for (l=0;l<8;l++)
			exists[1]=0;
			l=0;
			//试探八个方向
			for (k=0;k<8;k++)
			{
				tmpi=i+ktmove1[k];
				tmpj=j+ktmove2[k];
				//如果是边界了,不可走
				if(tmpi<0||tmpj<0||tmpi>7||tmpj>7)
					continue;
				//如果这个方向可走,记录下来
				if (board[tmpi][tmpj]==0)
				{
					nexti[l]=tmpi;
					nextj[l]=tmpj;
				    l++;
				}
			}
			count=l;
			//如果可走的方向为0个,返回
			if(count==0)
				return 0;
			else if(count==1)
				//只有一个可走的方向,所以直接是最少出路的方向
				min=0;
				else
			{
				//找出下一个位置的出路数
				for (l=0;l<count;l++)
				{
					for (k=0;k<8;k++)
					{
						tmpi=nexti[l]+ktmove1[k];
						tmpj=nextj[l]+ktmove2[k];
						if(tmpi<0||tmpi>7||tmpj<0||tmpj>7)
							continue;
						if(board[tmpi][tmpj]==0)
							exists[l]++;
					}

				}
				tmp=exists[0];
				min=0;
				//从可走的方向中寻找最少出路的方向
				for (l=1;l<count;l++)
				{
					if (exists[l]<tmp)
					{
						tmp=exists[l];
						min=1;
					}
				}

			}
			i=nexti[min];
			j=nextj[min];
		    board[i][j]=m;
	}
	return 1;

}



算法设计与分析题目练习三:骑士旅游问题(回溯算法)

题目:     问题描述:在一个N*N 格子的棋盘上,有一只国际象棋的骑士在棋盘的左下角,骑士只能根据象棋的规则进行移动, 要么横向跳动一格纵向跳动两格,要么纵向跳动一格横向跳动两格。骑士从第一个格子...

算法设计与分析题目练习三:骑士旅游问题(回溯算法)

问题描述:在一个N*N 格子的棋盘上,有一只国际象棋的骑士在棋盘的左下角,骑士只能根据象棋的规则进行移动,要么横向跳动一格纵向跳动两格,要么纵向跳动一格横向跳动两格。骑士从第一个格子出发,每个格子只能...

dancing links 骑士遍历

  • 2017年07月10日 12:32
  • 244KB
  • 下载

骑士vpn构建VPN

  • 2015年01月06日 18:02
  • 3.22MB
  • 下载

骑士周游问题(暴力解决:回溯法)

建议测试数据 3 0 或 4 0

骑士巡游word文档

  • 2016年06月19日 21:24
  • 310KB
  • 下载

台电骑士驱动程序

  • 2014年09月16日 13:27
  • 420KB
  • 下载

【BZOJ3875】【Ahoi2014】骑士游戏 SPFA处理有后效性动规

题解: 首先一个点可以分裂成多个新点,这样就有了图上动规的基础。 即f[i]表示i点被消灭的最小代价,它可以由分裂出的点们更新。 但是这个东西有后效性,所以我们用SPFA来处理它。 spfa处...
  • Vmurder
  • Vmurder
  • 2015年03月03日 17:26
  • 1854

骑士巡游程序

  • 2012年11月27日 20:14
  • 786B
  • 下载

骑士游历问题

  • 2014年05月02日 00:11
  • 133KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:骑士旅游
举报原因:
原因补充:

(最多只允许输入30个字)