Andrew NG 机器学习听课笔记(2)——过学习与欠学习,最小二乘的概率意义、logistic回归

原创 2012年11月20日 10:44:16

本文是Andrew NG先生机器学习公开课第二课的听课笔记,由于csdn中对mathtype公式的显示问题,所以直接以图片格式发表。本系列是由公开课的学习和一些自己的理解组成的。



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Andrew NG 机器学习听课笔记(2)——过学习与欠学习,最小二乘的概率意义、logistic回归

本文是Andrew NG先生机器学习公开课第二课的听课笔记,由于csdn中对mathtype公式的显示问题,所以直接以图片格式发表。本系列是由公开课的学习和一些自己的理解组成的。

欠拟合、过拟合及其解决方法

在我们机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优...

Andrew Ng机器学习笔记2——梯度下降法and最小二乘拟合

今天正式开始学习机器学习的算法,老师首先举了一个实例:已知某地区的房屋面积与价格的一个数据集,那么如何预测给定房屋面积的价格呢?我们大部分人可以想到的就是将画出房屋面积与价格的散点图,然后拟合出价格关...

Andrew NG机器学习课程笔记系列之——机器学习之逻辑回归(Logistic Regression)

1. Classification这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。之前的...

《机器学习实战》笔记之五——Logistic回归

第五章 Logistic回归 回归:对一些数据点,算法训练出直线参数,得到最佳拟合直线,能够对这些点很好的拟合。 训练分类器主要是寻找最佳拟合参数,故为最优化算法。 5.1 基于Logisti...

《机器学习实战》学习笔记之第五章—— Logistic回归

第五章 Logistic回归 Logistic回归的一般过程: (1) 收集数据:采用任意方法收集数据。 (2) 准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据   ...

斯坦福机器学习: 网易公开课系列笔记(二)——线性回归、梯度下降算法和最小二乘公式

课程一共分为三个板块,分别讲述了监督学习、非监督学习、增强学习的一些模型和相关算法。那么什么是监督学习?非监督学习?强化学习呢?      我们可以这样理解,假如我们对某个地区的鸟类进行分类,为了简便...

斯坦福机器学习: 网易公开课系列笔记(三)——局部加权回归、logistic回归

在上一节中,我们讲到了线性回归的梯度下降和最小二乘的求解方法,但是实际当中,大部分问题并不是线性的,如果用线性方程去拟合这些数据,误差会非常大。       下图中最左边的,是我们用y=Θ0+Θ1x...

Andrew Ng机器学习笔记(二):多变量线性回归

对于一个监督学习模型来说,过小的特征集合使得模型过于简单,过大的特征集合使得模型过于复杂。 对于特征集过小的情况,称之为欠拟合(underfitting); 对于特征集过大的情况,称之为过拟合(...

Python机器学习(二):Logistic回归建模分类实例——信用卡欺诈监测(上)

利用下采样处理数据,Logistic回归建模,实现信用卡欺诈监测
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)