Andrew NG 机器学习听课笔记(2)——过学习与欠学习,最小二乘的概率意义、logistic回归

原创 2012年11月20日 10:44:16

本文是Andrew NG先生机器学习公开课第二课的听课笔记,由于csdn中对mathtype公式的显示问题,所以直接以图片格式发表。本系列是由公开课的学习和一些自己的理解组成的。



【机器学习-斯坦福】学习笔记3 - 欠拟合与过拟合概念

欠拟合与过拟合概念 本次课程大纲: 1、  局部加权回归:线性回归的变化版本 2、  概率解释:另一种可能的对于线性回归的解释 3、  Logistic回归:基于2的一个分类算法 4、  感知...
  • maverick1990
  • maverick1990
  • 2013年09月16日 10:08
  • 13974

【机器学习】非平衡数据集的机器学习常用处理方法

定义:不平衡数据集:在分类等问题中,正负样本,或者各个类别的样本数目不一致。例子:在人脸检测中,比如训练库有10万张人脸图像,其中9万没有包含人脸,1万包含人脸,这个数据集就是典型的不平衡数据集。 ...
  • chenriwei2
  • chenriwei2
  • 2015年10月18日 13:13
  • 7643

机器学习-回归模型-欠拟合和过拟合

1. 什么是欠拟合和过拟合先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系第一张图片拟合的函数和训练集误差较大,我们称这种情况为 欠拟合第二张图片拟合的函数和训练集误差较小,我们称这种...
  • cgl1079743846
  • cgl1079743846
  • 2016年09月02日 00:15
  • 6773

Andrew NG 机器学习听课笔记(2)——过学习与欠学习,最小二乘的概率意义、logistic回归

本文是Andrew NG先生机器学习公开课第二课的听课笔记,由于csdn中对mathtype公式的显示问题,所以直接以图片格式发表。本系列是由公开课的学习和一些自己的理解组成的。...
  • tiandijun
  • tiandijun
  • 2014年03月19日 20:29
  • 832

Andrew Ng机器学习笔记2——梯度下降法and最小二乘拟合

今天正式开始学习机器学习的算法,老师首先举了一个实例:已知某地区的房屋面积与价格的一个数据集,那么如何预测给定房屋面积的价格呢?我们大部分人可以想到的就是将画出房屋面积与价格的散点图,然后拟合出价格关...
  • panglinzhuo
  • panglinzhuo
  • 2016年04月26日 16:48
  • 2261

Andrew NG机器学习课程笔记系列之——机器学习之逻辑回归(Logistic Regression)

1. Classification这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。之前的...
  • caimouse
  • caimouse
  • 2017年03月04日 21:20
  • 479

Andrew NG机器学习课程笔记系列之——机器学习之逻辑回归(Logistic Regression)

1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之...
  • mydear_11000
  • mydear_11000
  • 2016年03月12日 13:30
  • 1369

Andrew Ng机器学习笔记week2 多变量线性回归

第二周主要是多特征的线性回归知识点:一、multiple features(variables)-多变量 预测值: 二、Gradient descent for multiple variable...
  • kiooooo
  • kiooooo
  • 2017年11月30日 10:13
  • 48

Andrew Ng机器学习笔记ex2 逻辑回归

sigmoid函数 sigmoid.mfunction g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) com...
  • kiooooo
  • kiooooo
  • 2017年11月30日 15:18
  • 50

Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式)

Andrew Ng机器学习课程笔记–week21. 内容概要 Multivariate Linear Regression(多元线性回归) 多元特征 多元变量的梯度下降 特征缩放 Computing...
  • marsggbo
  • marsggbo
  • 2017年08月02日 20:32
  • 344
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Andrew NG 机器学习听课笔记(2)——过学习与欠学习,最小二乘的概率意义、logistic回归
举报原因:
原因补充:

(最多只允许输入30个字)