hdu2604(递推,矩阵快速幂)

原创 2013年11月14日 18:10:15

题目链接:hdu2604

这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式)

可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS:在别的博客粘过来,暂时还不太理解。。。)

设f(n)为字符串长度为n时复合条件的字符串个数,以字符串最后一个字符为分界点,当最后一个字符为m时前n-1个字符没有限制,即为f(n-1);当最后一个字符为f时就必须去除最后3个字符是fmf和fff的情况,在考虑最后两个字符为mf和ff的情况,显然不行;最后3个字符为fmf、mmf和fff、mff时只有当最后3个字符为mmf时前n-3个字符没有限制,即为f(n-3),当为mff时第n-3个字符可能为f因而对前n-3个字符串有限制;最后4个字符为fmff和mmff时mmff可行。这样就讨论完了字符串的构成情况,得出结论:
f(n)=f(n-1)+f(n-3)+f(n-4)

然后用矩阵快速幂就OK了~~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
using namespace std;
int n,mod;
int a[6] = {1,2,4,6,9,15};
struct node
{
    int map[4][4];
}unit,s;
void initial()//初始化
{
    int i;
    memset(s.map,0,sizeof(node));
    for(i = 1; i < 4; i ++)
    s.map[i][i-1] = 1;
    s.map[0][0] = s.map[0][2] = s.map[0][3] = 1;

    memset(unit.map,0,sizeof(node));
    for(i = 0; i < 4; i ++)//单位矩阵
    unit.map[i][i] = 1;
}
node Mul(node a,node b)
{
    node c;
    int i,j,k;
    for(i = 0; i < 4; i ++)
    for(j = 0; j < 4; j ++)
    {
        c.map[i][j] = 0;
        for(k = 0; k < 4; k ++)
        c.map[i][j] += (a.map[i][k]*b.map[k][j])%mod;
        c.map[i][j] %= mod;
    }
    return c;
}
void Matrix()
{
    while(n)
    {
        if(n&1) unit = Mul(unit,s);
        n >>= 1;
        s = Mul(s,s);
    }
    int ans = 0;
    for(int i = 0; i < 4; i ++)
    ans += (unit.map[0][i]*a[5-i])%mod;
    printf("%d\n",ans%mod);
}
int main()
{
    while(~scanf("%d%d",&n,&mod))
    {
        if(n <= 5)
        {
            printf("%d\n",a[n]%mod);
            continue;
        }
        n -= 5;
        initial();
        Matrix();
    }
    return 0;
}


相关文章推荐

hdu 2604 Queuing【递推+矩阵快速幂】

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...

HDU 2604_递推+矩阵快速幂

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submissi...

HDU 2604 递推 + 矩阵快速幂

HDU 2604 题解:首先, 记长为n的队列的K队列数为f(n); 易求得:f(0) = 0, f(1) = 2, f(2) =  4, f(3) = 6, f(4) =...
  • ADjky
  • ADjky
  • 2016年10月06日 18:37
  • 161

HDU 2604 Queuing (递推+ 矩阵快速幂)

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...
  • sizaif
  • sizaif
  • 2017年08月10日 10:30
  • 90

【递推+矩阵快速幂】【HDU2604】【Queuing】

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...

HDU 2604 Queuing (递推+矩阵快速幂)

【题目链接】:click here~~ 【题目大意】: n个人排队,f表示女,m表示男,包含子串‘fmf’和‘fff’的序列为O队列,否则为E队列,有多少个序列为E队列。 【思路】: 用f...

【递推&矩阵快速幂】hdu 2604

前四位我们可以算出d[1]=2,d[2]=4,d[3]=6,d[4]=9.    我们可以这样想:一个合法串可以由两个较短的合法串组成    就以d[n]为例:(注意不能重复)    1、...
  • leolin_
  • leolin_
  • 2011年10月22日 21:38
  • 411

HDU2604 递推关系+矩阵快速幂

HDU2604Queuing 题目大意求n阶序列,每一位可以填f或者m,求不存在fff或者fmf的字串的个数,根据题目建立递推关系式: 之后用矩阵快速幂套路掉 AC代码:#...

hdu 2604 Queuing 矩阵快速幂

链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 题意:给出一个队列,其中站着f(女人)m(男人),让你求出队列中不含有fmf和fff的队列总共的种类...

[HDU2604]Queuing(dp+矩阵快速幂)

在每一个死胡同的尽头,都有一个另一维度的天空。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu2604(递推,矩阵快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)