hdu2604(递推,矩阵快速幂)

原创 2013年11月14日 18:10:15

题目链接:hdu2604

这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式)

可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS:在别的博客粘过来,暂时还不太理解。。。)

设f(n)为字符串长度为n时复合条件的字符串个数,以字符串最后一个字符为分界点,当最后一个字符为m时前n-1个字符没有限制,即为f(n-1);当最后一个字符为f时就必须去除最后3个字符是fmf和fff的情况,在考虑最后两个字符为mf和ff的情况,显然不行;最后3个字符为fmf、mmf和fff、mff时只有当最后3个字符为mmf时前n-3个字符没有限制,即为f(n-3),当为mff时第n-3个字符可能为f因而对前n-3个字符串有限制;最后4个字符为fmff和mmff时mmff可行。这样就讨论完了字符串的构成情况,得出结论:
f(n)=f(n-1)+f(n-3)+f(n-4)

然后用矩阵快速幂就OK了~~

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
using namespace std;
int n,mod;
int a[6] = {1,2,4,6,9,15};
struct node
{
    int map[4][4];
}unit,s;
void initial()//初始化
{
    int i;
    memset(s.map,0,sizeof(node));
    for(i = 1; i < 4; i ++)
    s.map[i][i-1] = 1;
    s.map[0][0] = s.map[0][2] = s.map[0][3] = 1;

    memset(unit.map,0,sizeof(node));
    for(i = 0; i < 4; i ++)//单位矩阵
    unit.map[i][i] = 1;
}
node Mul(node a,node b)
{
    node c;
    int i,j,k;
    for(i = 0; i < 4; i ++)
    for(j = 0; j < 4; j ++)
    {
        c.map[i][j] = 0;
        for(k = 0; k < 4; k ++)
        c.map[i][j] += (a.map[i][k]*b.map[k][j])%mod;
        c.map[i][j] %= mod;
    }
    return c;
}
void Matrix()
{
    while(n)
    {
        if(n&1) unit = Mul(unit,s);
        n >>= 1;
        s = Mul(s,s);
    }
    int ans = 0;
    for(int i = 0; i < 4; i ++)
    ans += (unit.map[0][i]*a[5-i])%mod;
    printf("%d\n",ans%mod);
}
int main()
{
    while(~scanf("%d%d",&n,&mod))
    {
        if(n <= 5)
        {
            printf("%d\n",a[n]%mod);
            continue;
        }
        n -= 5;
        initial();
        Matrix();
    }
    return 0;
}


【递推+矩阵快速幂】【HDU2604】【Queuing】

Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S...
  • zy691357966
  • zy691357966
  • 2015年01月24日 13:16
  • 549

hdu2604 递推转换矩阵快速幂

刚开始还以为用位运算与或几下几个循环就搞定了,算着算着发现不行........       还是一种固定的切题角度,我假设有长度为n,总的排列数位f(n),怎么算他呢?从后往前考虑,因为大多数情况,...
  • nvnnv
  • nvnnv
  • 2016年03月01日 16:08
  • 149

矩阵快速幂 ——(递推表达式)

矩阵快速幂    首先知道矩阵       矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合;      矩阵乘法: 定义:设A为    的矩阵,B为    的矩阵,那么称    的矩阵...
  • WR_technology
  • WR_technology
  • 2016年05月06日 19:44
  • 1448

矩阵快速幂优化递推式 例:斐波那契数列

矩阵快速幂优化递推式
  • G_congratulation
  • G_congratulation
  • 2016年10月04日 16:52
  • 4687

NYOJ 1075 (递推 + 矩阵快速幂)

“红色病毒”问题 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 医学研究者最近发现了一种新病毒,因为其蔓延速度与曾经在Internet上传播的“红色代码”不相上下,故被...
  • LYHVOYAGE
  • LYHVOYAGE
  • 2014年09月29日 08:03
  • 1403

HDU2604【矩阵快速幂】

思路: 把fm看成01,f-1,m-0; 不能存在101,111; dp[i]代表第i结尾的方案数; ①:结尾是0一定行:只要i-1序列里添个0就好了,dp[i]+=dp[i-1]; ...
  • KEYboarderQQ
  • KEYboarderQQ
  • 2016年11月05日 22:40
  • 218

矩阵快速幂与递推式

矩阵快速幂 递推式
  • ACTerminate
  • ACTerminate
  • 2016年10月31日 19:13
  • 534

hdu2604矩阵快速幂

import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.IOException; impor...
  • u013491262
  • u013491262
  • 2015年07月13日 19:42
  • 205

hdu2604(矩阵快速幂)

题意:字符串只能由f和m两种字符构成,问长度为L且不出现子串fmf,fff的字符串有多少种. 解法:初始的矩阵应该是 mm   1 0 0 1    mm 。但是应为不能出现fmf,fff子串,所...
  • xiefubao
  • xiefubao
  • 2014年05月23日 22:10
  • 535

hdu2604 矩阵快速幂

题意:       给你n个人,排成一个长度是n的队伍,人只有两类f,m,问可以有多少种排法使度列中不出现fff,fmf这样的子串。 思路:       一开始暴力,结果超时了,其实这个题目...
  • u013761036
  • u013761036
  • 2014年08月15日 10:43
  • 303
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu2604(递推,矩阵快速幂)
举报原因:
原因补充:

(最多只允许输入30个字)