关闭

poj2528(离散化,线段树成段覆盖)

标签: 数据结构延迟标记线段树离散化
1065人阅读 评论(0) 收藏 举报
分类:

题目链接:poj2528

之前写的代码离散化有缺陷,由于数据比较弱,所以能过,看了大牛写的,重新写了下

/*poj 2528 Mayor's posters 离散化,成段覆盖
题目大意:
不断的有海报覆盖在以前的海报上,求能看到几张海报

思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012]
我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,
所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了

所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),
这样普通的离散化会造成许多错误

给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
线段2覆盖了[1,2],线段3覆盖了[3,4],那么线段1是否被完全覆盖掉了呢?
例子一是完全被覆盖掉了,而例子二没有被覆盖
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.

*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1

const int N = 11000;
bool hash[N<<1];
int ln[N],rn[N];
int col[N<<4];
int X[N<<2];
int ans;
void pushdown(int rt)
{
    if(col[rt] != -1)
    {
        col[rt<<1] = col[rt<<1|1] = col[rt];
        col[rt] = -1;
    }
}
void update(int L, int R, int color, int l, int r, int rt)
{
    if(L <= l && r <= R)
    {
        col[rt] = color;
        return;
    }
    pushdown(rt);
    int m = (l+r) >> 1;
    if(L <= m) update(L, R, color, lson);
    if(m < R) update(L, R, color, rson);
}
void query(int l, int r, int rt)
{
    if(col[rt] != -1)
    {
        if(!hash[ col[rt] ]) ans ++;
        hash[ col[rt] ] = true;
        return;
    }
    if(l == r) return;
    int m = (l+r) >> 1;
    query(lson);
    query(rson);
}
int main()
{
    int T,n,i;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        int m = 0;
        for(i = 0; i < n; i ++)
        {
            scanf("%d%d",&ln[i],&rn[i]);
            X[m++] = ln[i];
            X[m++] = rn[i];
        }
        sort(X, X+m);
        int tot = 1;
        for(i = 1; i < m; i ++)//去掉重复的点
            if(X[i] != X[i-1]) X[tot++] = X[i];
        for(i = tot - 1; i > 0; i --)//相邻两个数之差大于1,则在这两个数中间添加一个数
            if(X[i] != X[i-1] + 1) X[tot++] = X[i-1] + 1;
        sort(X, X+tot);
        memset(col, -1, sizeof(col));
        for(i = 0; i < n; i ++)
        {
            int l = lower_bound(X, X+tot, ln[i]) - X;
            int r = lower_bound(X, X+tot, rn[i]) - X;
            update(l, r, i, 0, tot, 1);
        }
        ans = 0;
        memset(hash, false, sizeof(hash));
        query(0, tot, 1);
        printf("%d\n",ans);
    }
    return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:128458次
    • 积分:3069
    • 等级:
    • 排名:第11260名
    • 原创:186篇
    • 转载:13篇
    • 译文:0篇
    • 评论:2条
    最新评论