Interpretable Convolutional Neural Networks笔记

通过mask使得网络部分激活

mask的数值以一点为中心的L1或L2距离衰减,值域范围是tau到-tau

最小化的目标是负X(feature map)和T(template)的互信息(希望互信息大,X和T相关性高),计算条件概率p(X|T)使用softmax转换的X和T的相似度(X和T的dot)

forward过程选择X乘T再经过relu之后和最大的template,而且要求template的label和数据label一致

template的类型选择为X最大的类型(对所有该类型的X求和)

计算loss中使用一些近似加速计算(对一些变量多个step更新一次等)

loss鼓励template只被一类输入数据激活,以及template中的激活区域尽量少

可视化时,选取值大于阈值的结果,例如选取前千分之五的结果

为了在大小上(或者说分辨率上)和原图像对齐,feature map X通过双线性插值扩展到原图像的维度

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
训练可解释的卷积神经网络是通过区分不同的类别来实现的。 卷积神经网络(CNN)是一种用于图像识别和分类任务的深度学习模型。然而,CNN的内部工作方式往往被认为是黑盒子,难以解释其决策过程和分类结果。为了提高CNN的解释性,可以通过不同iating算法来训练可解释的CNN。 不同iating是一种梯度优化方法,它通过梯度反向传播来优化网络的参数。在CNN中,不同iating的关键思想是通过最小化特定类别的损失函数来训练网络,从而鼓励网络关注于这个类别的特征。 通过不同iating类别,我们可以训练网络更加关注于区分不同类别的特征。这样训练出的网络能够通过可解释的方式较好地解释其决策过程。例如,在图像分类任务中,我们可以选择一些代表性的类别,如猫和狗,然后通过最小化猫和狗类别的损失函数来训练网络。这将使网络更加关注于猫和狗之间的区别,从而使其更容易解释其分类结果。 此外,还可以使用可视化方法来进一步解释训练出的CNN。通过可视化网络的卷积层和特征图,我们可以看到网络在不同类别上的激活模式,从而理解网络是如何学习到这些特征的。 总而言之,通过不同iating类别并结合可视化方法,我们可以训练出更加可解释的卷积神经网络,更好地理解其决策过程和分类结果。这将对深度学习模型的解释性研究和应用有着重要的意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值