关闭

八皇后递归求解

标签: 八皇后递归
170人阅读 评论(0) 收藏 举报
分类:

八皇后,很经典的一道题目了,即在棋盘上摆满八个皇后,互相不在同一行同一列同一对角线上,问有几种摆法。其实可以扩展为n(n >= 4)皇后问题。以前被这种题目吓尿过,现在想来当时实在可笑。

有了刷leet的经验,这道题跟leet上求电话号码组合的题目何其类似,只是多了不能同行同列同对角线的判断。于是套用该题结构走起,比较顺利的做了出来,不过有bug导致丢解,原因为当最后一列的数据置1后如果其下一层无解的话,递归回来后会直接跳出循环导致此时置的1没有还原回去,造成之后的冲突判断错误。解决只需在每次循环后都全置本层数据为0即可,因为如果是解的话,根本走不到全置0的语句,当打印出解后再依次将本层置0回退,正好满足要求。

此程序不太满意的地方为冲突检测的方法有些呆笨。

bool isConfilctQueen(int **martix, int row, int column, int count) {
    bool result = false;
    for (int i = 0; i < count; i++) { //行检测
        if (i == column) continue;
        if (martix[row][i] == 1)
            return true;
    }
    for (int i = 0; i < count; i++) { //列检测
        if (i == row) continue;
        if (martix[i][column] == 1)
            return true;
    }
    for (int i = 1; i < count; i++) { //对角线检测,以目标点为中心,对角线相对长度一次检测四个角
        if (row - i >= 0 && column - i >= 0) { //左上角
            if (martix[row - i][column - i] == 1)
                return true;
        }
        if (row - i >= 0 && column + i < count) { //右上角
            if (martix[row - i][column + i] == 1)
                return true;
        }
        if (row + i < count && column - i >= 0) { //左下角
            if (martix[row + i][column - i] == 1)
                return true;
        }
        if (row + i < count && column + i < count) { //右下角
            if (martix[row + i][column + i] == 1)
                return true;
        }
    }
    
    return result;
}
void backtrackingQueen(int **martix, int n, int count, int *num) {
    if (n == count) {
        *num += 1;
        printf("第%d组解:\n", *num);
        for (int i = 0; i < count; i++) {
            for (int j = 0; j < count; j++)
                printf("[%d]", martix[i][j]);
            printf("\n");
        }
        printf("\n");
        return;
    }
    for (int i = 0; i < count; i++) { //此循环里2个memset的位置有玄妙
//        memset(martix[n], 0, sizeof(int) * count);
        martix[n][i] = 1;
        if (!isConfilctQueen(martix, n, i, count))
            backtrackingQueen(martix, n + 1, count, num);
        memset(martix[n], 0, sizeof(int) * count);
    }
}
int nQuenn(int count) {
    if (count < 4) {
        printf("Error! n < 4\n");
        return 0;
    }
    int **martixQuenn = (int **)malloc(sizeof(int *) * count);
    for (int i = 0; i < count; i++) {
        martixQuenn[i] = (int *)malloc(sizeof(int) * count);
        memset(martixQuenn[i], 0, sizeof(int) * count);
    }
    
    int n = 0;
    int num = 0;
    backtrackingQueen(martixQuenn, n, count, &num);
    
    for (int i = 0; i < count; i++)
        free(martixQuenn[i]);
    free(martixQuenn);
    
    return num;
}



后来又重新写了一遍,重点在于优化了下冲突判断的函数:目标点跟之前置为1的点斜率不成1或-1就说明不是对角线,另我的程序是按列生成的,所以隐含了下一个点不在同一列的条件,即不用判断是否同列,所以只要判断是否同行就行。

程序如下,n可以控制要输出几个皇后:

void printNQueens(int **matrix, int n, int row, int column, int *count) {
    if (row >= n || column >= n)
        return;
    
    bool flag = true;
    for (int i = 0; i < n && flag; i++) {
        
        for (int j = 0; j < n && flag; j++) {
            if (matrix[i][j] == 1) {
                if (row == i || abs(row - i) == abs(column - j)) {
                    flag = false;
                }
            }
        }
        
    }
    
    if (flag) {
        matrix[row][column] = 1;
        
        if (column == n - 1) { //最后一列到达,开始打印
            *count += 1;
            printf("第%d组解:\n", *count);
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    printf("%d ", matrix[i][j]);
                }
                printf("\n");
            }
            printf("\n");
            
            matrix[row][column] = 0;
            
            return;
        }
    }
    
    if (flag) {
        printNQueens(matrix, n, 0, column + 1, count);
        matrix[row][column] = 0;
    }

    printNQueens(matrix, n, row + 1, column, count);
}
bool nQueens(int n) {
    bool result = true;
    
    int **martrix = (int **)calloc(n, sizeof(int *));
    for (int i = 0; i < n; i++) {
        martrix[i] = (int *)calloc(n, sizeof(int));
        for (int j = 0; j < n; j++)
            martrix[i][j] = 0;
    }
    
    int *count = (int *)calloc(1, sizeof(int));
    int row = 0, column = 0;
    
    printNQueens(martrix, n, row, column, count);
    printf("all nQueens are %d.\n\n", *count);
    
    for (int i = 0; i < n; i++) {
        free(martrix[i]);
        martrix[i] = NULL;
    }
    free(martrix);
    martrix = NULL;
    
    free(count);
    count = NULL;
    
    return result;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:21487次
    • 积分:1466
    • 等级:
    • 排名:千里之外
    • 原创:128篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条
    文章分类