51nod round3# 序列分解(折半枚举+字典树)

原创 2015年07月06日 20:23:53

小刀和大刀是双胞胎兄弟。今天他们玩一个有意思的游戏。 大刀给小刀准备了一个长度为n的整数序列。小刀试着把这个序列分解成两个长度为n/2的子序列。

这两个子序列必须满足以下两个条件:

1.他们不能相互重叠。

2.他们要完全一样。

如果小刀可以分解成功,大刀会给小刀一些糖果。

然而这个问题对于小刀来说太难了。他想请你来帮忙。


Input
第一行给出一个T,表示T组数据。(1<=T<=5)
接下来每一组数据,输入共2行。
第一行包含一个整数n (2<=n<=40且为偶数)。
第二行给出n个整数a[0],a[1],a[2],…,a[n-1]表示大刀给小刀准备的序列。(-1,000,000,000<=a[i]<=1,000,000,000)
Output
如果小刀可以完成游戏,输出"Good job!!" (不包含引号),否则 输出"What a pity!" (不包含引号)。
Input示例
2
4
1 1 2 2
6
1 2 3 4 5 6
Output示例
Good job!!
What a pity!




思路:把原来的串分成两半。然后前半段枚举哪些给第一个序列,剩下的给第二个序列,从前往后匹配,如果有一个串是另外一个串的前缀,那么把剩下的后缀插入到字典树中。否则不插入。

然后枚举后半段。这个时候要有一个串是另外一个串的后缀,然后拿剩下的前缀去字典树里面查询。如果有的话,说明成功。而且先要离散化一下

复杂度是  $O\left( {{\rm{n*}}{{\rm{2}}^{n/2}}} \right)$ 


//Accepted 375 ms 96120 KB
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define refeach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;
const int N = 1<<18;
struct node
{
    node* child[45];
    bool flag;
    node()
    {
        memset(child,0,sizeof(child));
        flag = 0;
    }
}trie[N];
int sz;
node *root,*cur;
node* createnode()
{
    memset(trie[sz].child,0,sizeof(trie[sz].child));
    trie[sz].flag = 0;
    return &trie[sz++];
}
void Insert(int s[],int L,int R)
{
    cur = root;
    for(int p = L; p <= R; p++)
    {
        int val = s[p] ;
        if(cur->child[val] == NULL )
            cur->child[val] = createnode();
        cur = cur->child[val];
    }
    cur->flag = 1;
}
bool query(int s[],int L,int R)
{
    cur = root;
    for(int p = R;p >= L; p--)
    {
        int val = s[p];
        if(cur->child[val] == NULL) return false;
        cur = cur->child[val];
    }
    return cur->flag;
}
pair<int,int>b[50];
int a[50];
int s1[50],s2[50];
int top1,top2;
int main()
{

    int T;
    cin>>T;
    while(T--)
    {
        sz = 0;
        root = createnode();
        int n;
        scanf("%d",&n);
        REP(i,n) scanf("%d",&b[i].first),b[i].second = i;
        sort(b+1,b+1+n);
        int maxx = 0;
        a[b[1].second] = maxx;
        for(int i = 2 ; i<= n ; i++)
            if(b[i].first == b[i-1].first) a[b[i].second] = maxx;
            else a[b[i].second] = ++maxx;
        for(int mask = 0; mask < (1<<n/2) ; mask++)
        {
            top1 = top2 =0;
            int i;
            for(i = 0; i < n/2; i++)
            {
                if(mask&(1<<i))
                {
                    s1[++top1] = a[i+1];
                    if(top1 <= top2 && s1[top1] != s2[top1]) break;
                }
                else
                {
                    s2[++top2] = a[i+1];
                    if(top2 <= top1 && s1[top2] != s2[top2]) break;
                }
            }
            if(i == n/2)
            {
                if(top1 <= top2) Insert(s2,top1+1,top2);
                else Insert(s1,top2+1,top1);
            }
        }

        bool KO = 0;
        for(int mask = 0; mask < (1<<n/2) && KO == 0; mask++)
        {
            top1 = top2 = 0;
            int i;
            for(i = 0; i < n/2; i++)
            {
                if(mask&(1<<i))
                {
                    s1[++top1] = a[n-i];
                    if(top1 <= top2 && s1[top1] != s2[top1]) break;
                }
                else
                {
                    s2[++top2] = a[n-i];
                    if(top2 <= top1 && s1[top2] != s2[top2]) break;
                }
            }
            if(i == n/2)
            {
                if(top1 <= top2 && query(s2,top1+1,top2)) KO = 1;
                else if(top1 > top2 && query(s1,top2+1,top1)) KO = 1;
            }
        }
        if(KO) puts("Good job!!");
        else puts("What a pity!");
    }
    return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

51nod 算法马拉松3 A:序列分解

序列分解 System Message (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 小刀和大刀是双胞胎兄弟。今天他们玩一个有意思的游戏。 大...

51nod 1268 和为K的组合【Dp/Dfs/折半枚举】

1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使...

【51Nod 1255】字典序最小的子序列

Description给出一个由a-z组成的字符串S,求他的一个子序列,满足如下条件:1、包含字符串中所有出现过的字符各1个。 2、是所有满足条件1的串中,字典序最小的。例如:babbdcc,出现过...

51Nod-1255-字典序最小的子序列

ACM模版描述题解这道题大致思路不难,但是细节问题颇多,用两种方法解题。第一种,遍历原串,如果答案串中没有则往答案串中插入,如果答案串中第i个等于它,并且该字母往后查有第j个比他小,并且保证i和j之间...
  • f_zyj
  • f_zyj
  • 2016-08-29 18:59
  • 817

51NOD 1255 字典序最小的子序列 【贪心】

1255 字典序最小的子序列 题目来源: 天津大学OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给出一个由a-z组成的字符串S,求他的一个子序...

51nod 1163 最高的奖励 (贪心+优先队列/并查集)&& 1191 消灭兔子(贪心+优先队列维护) && 1475 建设国家 (思维枚举+优先队列)

1163 最高的奖励 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有N个任务,每个任务有一个最晚结束时间以及一个对应的奖励...

51nod 1616 最小集合(数论)(枚举)

最小集合A君有一个集合。 这个集合有个神奇的性质。 若X,Y属于该集合,那么X与Y的最大公因数也属于该集合。 但是他忘了这个集合中原先有哪些数字。 不过幸运的是,他记起了其中n个数字。 当然...

51NOD-1391 01串(预处理&&枚举)

能想到枚举x的位置,求以x为分割点的区间的最大长度,但是不知道应该如何处理出x向左延伸的最大长度和x+1向右延伸的最大长度 看了题解后才明白令串中的0代表数-1,1代表数1 ①求l[i]时(下标从1开...

51NOD 1116 K进制下的大数(字符串取模 + 枚举)

传送门 1116 K进制下的大数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只...

51NOD 1316 回文矩阵 【枚举】

1316 回文矩阵 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个N*M的矩阵A完全由0与1两个数字组成(0<N...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)