HDU 5266 pog loves szh III (LAC)

原创 2015年07月07日 20:25:07

问题描述
pog在与szh玩游戏,首先pog在纸上画了一棵有根树,这里我们定义1为这棵树的根,然后szh在这棵树中选了若干个点,想让pog帮忙找找这些点的最近公共祖先在哪里,一个点为S的最近公共祖先当且仅当以该点为根的子树包含S中的所有点,且该点深度最大。然而,这个问题是十分困难的,出于szh对pog的爱,他决定只找编号连续的点,即l i  

~r i  
输入描述
若干组数据(不超过3 n10000 Q10000 

)。
每组数据第一行一个整数n(1n300000) 

,表示树的节点个数。
接下来n1 

行,每行两个数A i B i  

,表示存在一条边连接这两个节点。
接下来一行一个数Q(1Q300000) 

,表示有Q 

组询问。
接下来Q行每行两个数l i ,r i (1lirin) 

,表示询问编号为l i  

~r i  

的点的最近公共祖先。
输出描述
对于每组的每个询问,输出一行,表示编号为li~ri的点的最近公共祖先的编号。
输入样例
5
1 2
1 3
3 4
4 5
5
1 2
2 3
3 4
3 5
1 5
输出样例
1
1
3
3
1


思路:

做这题的方法有很多。下面给出2种解法。
1:维护一个跳表,表示编号为i ~i+2 j 1 的LCA,注意在这里求LCA必须用O(1) 的做法才能通过所有数据。可以转换为RMQ,每次查询时只需查询两个数的LCA即可。
2:考虑dfs序,通过在简单的证明可知L~R的LCA为L ~R 中dfs序较小的那个位置与dfs序较大的那个位置的LCA。因此只要通过st表处理L~R最大dfs序与最小dfs序的编号即可。


方法一:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
const int N = 300000+1000;
int Q,n;
int head[N];
struct Edge
{
    int v,nxt;
}es[N<<1];
int cnt;

inline void add_edge(int u,int v)
{
    es[cnt].v=v;
    es[cnt].nxt=head[u];
    head[u]=cnt++;
    es[cnt].v=u;
    es[cnt].nxt=head[v];
    head[v]=cnt++;
}

int index;
int vs[N*2],id[N],dep[N];
int lca[N*2][20];
int minn[N][20];
int maxn[N][20];
void dfs(int u,int fa,int h)
{
    id[u]=++index;
    vs[index]=u;
    dep[u]=h;
    for(int i=head[u];~i;i=es[i].nxt)
    {
        int v=es[i].v;
        if(v==fa)continue;
        dfs(v,u,h+1);
        vs[++index]=u;
    }
}

int mm[2*N+100];
void ini()
{
    memset(head,-1,sizeof(head));
    cnt=index=0;
}
int main()
{
    mm[0]=-1;
    for(int i=1;i<=2*N;i++) mm[i]= (((i-1)&i)==0)? mm[i-1]+1:mm[i-1];
    while(~scanf("%d",&n))
    {
        ini();
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add_edge(u,v);
        }
        dfs(1,1,0);
        for(int i=1;i<=index;i++) lca[i][0]=vs[i];
        for(int j=1;j<=20;j++)
            for(int i=1;i+(1<<j)-1<=index;i++)
            {
                int a=lca[i][j-1],b=lca[i+(1<<(j-1))][j-1];
                lca[i][j] = dep[a]<dep[b] ? a:b;
            }
        for(int i=1;i<=n;i++) minn[i][0]=maxn[i][0]=id[i];
        for(int j=1;j<=20;j++)
            for(int i=1;i+(1<<j)-1<=n;i++)
            {
                minn[i][j]=min(minn[i][j-1],minn[i+(1<<(j-1))][j-1]);
                maxn[i][j]=max(maxn[i][j-1],maxn[i+(1<<(j-1))][j-1]);
            }

        scanf("%d",&Q);
        for(int i=1;i<=Q;i++)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            int k=mm[r-l+1];
            int L=min(minn[l][k],minn[r-(1<<k)+1][k]);
            int R=max(maxn[l][k],maxn[r-(1<<k)+1][k]);
            k=mm[R-L+1];
            int a=lca[L][k],b=lca[R-(1<<k)+1][k];
            int ans = dep[a]<dep[b]? a:b;
            printf("%d\n",ans);

        }
    }
    return 0;
}


方法二:(防止爆栈就换成bfs)
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

const int N = 300000+1000;
const int DEG  = 20;
int Q,n;
int pa[N][20];
int dep[N];
int head[N];
struct Edge
{
    int v,nxt;
}es[N<<1];
int cnt;
inline void add_edge(int u,int v)
{
    es[cnt].v=v;
    es[cnt].nxt=head[u];
    head[u]=cnt++;
    es[cnt].v=u;
    es[cnt].nxt=head[v];
    head[v]=cnt++;
}
/*
void bfs(int root)
{
    queue<int>q;
    dep[root]=0;
    pa[root][0]=root;
    q.push(root);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=1;i<DEG;i++)
            pa[u][i]=pa[pa[u][i-1]][i-1];
        for(int i=head[u];~i;i=es[i].nxt)
        {
            int v=es[i].v;
            if(v==pa[u][0]) continue;
            pa[v][0]=u;
            dep[v]=dep[u]+1;
            q.push(v);
        }
    }
}
*/
void dfs(int u,int fa,int h)
{
    dep[u]=h;
    pa[u][0]=fa;
    for(int i=1;i<DEG;i++) pa[u][i]=pa[pa[u][i-1]][i-1];
    for(int i=head[u];~i;i=es[i].nxt)
    {
        int v=es[i].v;
        if(v!=fa) dfs(v,u,h+1);
    }
}
int dp[N][20];
int LCA(int u,int v)
{
    if(dep[u]>dep[v]) swap(u,v);
    for(int det=dep[v]-dep[u],i=0;det;det>>=1,i++)
        if(det&1) v=pa[v][i];
    if(u==v) return u;
    for(int i=DEG-1;i>=0;i--)
        if(pa[u][i]!=pa[v][i]) v=pa[v][i],u=pa[u][i];
    return pa[u][0];
}
int mm[N];
void ini()
{
    memset(head,-1,sizeof(head));
    cnt=0;
}
int main()
{
    mm[0]=-1;
    for(int i=1;i<=N-1;i++)mm[i]= (((i-1)&i)==0)? mm[i-1]+1:mm[i-1];
    while(~scanf("%d",&n))
    {
        ini();
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            add_edge(u,v);
        }
        dfs(1,1,0);
        for(int i=1;i<=n;i++) dp[i][0]=i;
        for(int j=1;j<=20;j++)
            for(int i=1;i+(1<<j)-1<=n;i++)
                dp[i][j]=LCA(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);

        scanf("%d",&Q);
        for(int i=1;i<=Q;i++)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            int k=mm[r-l+1];
            int ans=LCA(dp[l][k],dp[r-(1<<k)+1][k]);
            printf("%d\n",ans);
        }
    }
    return 0;

}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 5266 pog loves szh III (线段树+在线LCA转RMQ)

题目地址:HDU 5266 这题用转RMQ求LCA的方法来做的非常简单,只需要找到l-r区间内的dfs序最大的和最小的就可以,那么用线段树或者RMQ维护一下区间最值就可以了。然后就是找dfs序最大的...

hdu 5266 pog loves szh III LCA+RMQ

题意: 给你一棵树,然后询问l~r节点的最近公共祖先(LCA)。 思路: 用RMQ维护一段区间的LCA,然后询问时,将两个区间的LCA再求一次LCA即可。 code: #pragma com...

hdu 5266 pog loves szh III(LCA)

题意:求编号l-r的lca。 做法:第一种方法是维护一个类似rmq的东西,因为abcd的lca,可以由ab的lca和cd的lca的lca得到,然后重叠也没有关系,就比如刚才的例子,abcd的lca也...

【HDU】5275 pog loves szh IV【拉格朗日插值法】

传送门:【HDU】5275 pog loves szh IV题目分析:首先,队友给了我一个拉格朗日插值法的公式,裸的OWO,如下: ∑i=lr{yi∏i!=j(xi−xj)∏i!=j(x−xj)}\...

hdu 5267 pog loves szh IV(点分治+线段树)

好久之前写的题了。现在要重新开始写题解了。就从这题开始吧。 题意:一棵树,两点之间的权值为路径上的值异或得到,求任意两点之间的权值和,有修改操作,每次都要输出任意两点间的权值和。 做法:当时写这题写了...

hdu 5265 pog loves szh II

pog loves szh II Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)...

HDU 5265 pog loves szh II (二分查找)

【题目链接】click here~~ 【题目大意】在给定 的数组里选两个数取模p的情况下和最大 【解题思路】: 思路见官方题解吧~~ 弱弱献上代码: /* View Code Problem : 52...

BestCoder Round #43 HDU5265 pog loves szh II 排序+贪心

pog loves szh II                                      ...

【HDU】5267 pog loves szh IV【动态点分治】

传送门:【HDU】5267 pog loves szh IV 题目分析:首先我们用树分治,对每一个分治重心,以此为根的子树,建立一棵线段树。可以发现总节点数只有$O(NlogN)$,因为每一层都...

hdu 5266(线段树+LCA)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5266 解题思路: 考虑dfs序,通过在简单的证明可知L~R的LCA为L ~R 中dfs序较小的那个...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)