【第22期】观点:IT 行业加班,到底有没有价值?

六、3D数学矩阵线性变换

原创 2017年01月03日 16:00:54

3D数学矩阵线性变换

  • 几何解释
  • 旋转
  • 缩放
  • 投影
  • 镜像
  • 仿射

几何解释
     一般来说方阵能描述任意线性变换。线性变换保留了直线和平行线,而远点没有移动。线性变换保留直线的同时,其他的几何性质就有可能发生改变了(角、长度、面积、体积)。

每一种线性变换都有一种变换矩阵,互不相同。



旋转


旋转公式

2D 旋转
2D 旋转
2D X旋转矩阵
这里写图片描述


绕x、y、z轴进行3D旋转:

x轴
x
y轴
y
z轴
z


缩放

缩放矩阵公式:

缩放矩阵

缩放一个向量:

缩放一个向量


投影

正交投影:

二维变一维、三维变二维
*(这里就不解释投影的基本概念和几何视角了)

投影投射的轴保留(二维)

二维

投影投射的轴保留(三维)

这里写图片描述


镜像

镜像

矩阵公式:

这里写图片描述


切变(仿射)

2D 仿射:

这里写图片描述

x被Y仿射

3D 仿射

这里写图片描述

Hxy,XY被Z仿射
Hxz,XZ被Y仿射
Hyz,YZ被X仿射

版权声明:转载请附上作者信息,未经作者同意禁止转载 举报

相关文章推荐

3D数学 ---- 矩阵和线性变换(4)

变换的组合设想世界中有一个任意方向、任意位置的物体,我们要把它渲染到任意方向、任意位置的摄像机中。为了做到这一点,必须将物体的所有顶点从物体坐标系变换到世界坐标系,接着再从世界坐标系变换到摄像机坐标系...

3D 图形编程的数学基础(3) 矩阵基本变换

write by 九天雁翎(JTianLing) -- blog.csdn.net/vagrxie

欢迎关注CSDN程序人生公众号

关注程序员生活,汇聚开发轶事。

矩阵与线性变换

一般来说,方阵能描述任意线性变换。线性变换保留了直线和平行线,但原点没有移动。线性变换保留直线的同时,其他的几何性质如长度、角度、面积和体积可能被变换改变了。从非技术意义上说,线性变换可能“拉伸”坐标系,但不会“弯曲”或“卷折”坐标系。

3D数学 ---- 矩阵和线性变换

【转】http://www.cnblogs.com/bobyguo/articles/1263355.html一般来说,方阵能描述任意线性变换。线性变换保留了直线和平行线,但原点没有移动。线性变换保留...

3D图形技术概念和渲染管线的处理

from: http://psv.tgbus.com/news/ynzx/201305/20130528094843.shtml   3D图形技术概念和渲染管线的处理 一:3D图形的概念 图1是3D图形的流程模型。这个虽然是对应DirectX 10/SM4的GPU流程模型,不过部分流程会根据GPU的不同,有时会有更细致的处理,有时也会做一些简略,这点敬请谅
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)