六、3D数学矩阵线性变换

原创 2017年01月03日 16:00:54

3D数学矩阵线性变换

  • 几何解释
  • 旋转
  • 缩放
  • 投影
  • 镜像
  • 仿射

几何解释
     一般来说方阵能描述任意线性变换。线性变换保留了直线和平行线,而远点没有移动。线性变换保留直线的同时,其他的几何性质就有可能发生改变了(角、长度、面积、体积)。

每一种线性变换都有一种变换矩阵,互不相同。



旋转


旋转公式

2D 旋转
2D 旋转
2D X旋转矩阵
这里写图片描述


绕x、y、z轴进行3D旋转:

x轴
x
y轴
y
z轴
z


缩放

缩放矩阵公式:

缩放矩阵

缩放一个向量:

缩放一个向量


投影

正交投影:

二维变一维、三维变二维
*(这里就不解释投影的基本概念和几何视角了)

投影投射的轴保留(二维)

二维

投影投射的轴保留(三维)

这里写图片描述


镜像

镜像

矩阵公式:

这里写图片描述


切变(仿射)

2D 仿射:

这里写图片描述

x被Y仿射

3D 仿射

这里写图片描述

Hxy,XY被Z仿射
Hxz,XZ被Y仿射
Hyz,YZ被X仿射

版权声明:转载请附上作者信息,未经作者同意禁止转载

相关文章推荐

3D数学 ---- 矩阵和线性变换

一般来说,方阵能描述任意线性变换。线性变换保留了直线和平行线,但原点没有移动。线性变换保留直线的同时,其他的几何性质如长度、角度、面积和体积可能被变换改变了。从非技术意义上说,线性变换可能“拉伸”坐标...

3D数学 ---- 矩阵和线性变换

一般来说,方阵能描述任意线性变换。线性变换保留了直线和平行线,但原点没有移动。线性变换保留直线的同时,其他的几何性质如长度、角度、面积和体 积可能被变换改变了。从非技术意义上说,线性变换可能“拉伸”坐...

3D数学 矩阵和线性变换之旋转

矩阵和线性变换之旋转1. 如何在3D世界中对坐标进行变换? 我们可以通过产生一个具有某种变换效果的矩形,用坐标上的某个点乘上这个矩阵,就会得到变换后的点。这是线性代数中线性变换的内容。 2. 具有...

3D数学基础--矩阵线性变换

前言本章主要讨论用3×3矩阵表达3D线性变换,这个变换不包括平移,包含平移的变换称作仿射变换(就是线性变换后接着平移),需要用4×4矩阵表达。所以本章所讨论的变换都是基于坐标系原点的变换。旋转 2D中...

3D数学 矩阵和线性变换之切变

矩阵和线性变换之切变1. 什么是切变? 我们来看一幅图片。下面的图片,随着y增大,x的偏移会越来越大。这种类型的变换就叫切换。我们可以得到下图的公式x’ = x + sy。该公式转换成矩阵就得到了...

3D数学 ---- 矩阵和线性变换

一般来说,方阵能描述任意线性变换。线性变换保留了直线和平行线,但原点没有移动。线性变换保留直线的同时,其他的几何性质如长度、角度、面积和体积可能被变换改变了。从非技术意义上说,线性变换可能“拉伸”坐标...

3D数学读书笔记——矩阵基础番外篇之线性变换

关于线性变换知识的一些讲解和介绍。

【D3D学习记录】入门3D编程的基本数学知识(2)-向量、线性空间和线性变换

本文主要记录了一些与D3D相关的基本且重要的数学知识,目的是为了入门3D编程。分多个部分。 向量部分的内容仅限于二维或三维线性空间,一些向量性质的几何意义在高维空间没有意义,而且3D程序设计也没有必...

线性变换及其矩阵

  • 2012-11-16 19:25
  • 576KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)