leetcode-137-Single Number II

本文介绍了一种解决LeetCode上第137题的有效方法,该题要求找出一个整数数组中仅出现一次的数字,其余数字均出现三次。采用位运算思想,通过统计所有数字各个位的总和并模3,最终重构出只出现一次的数字。
摘要由CSDN通过智能技术生成

问题

题目:[leetcode-137]

思路

这个题的思路比较通用,对于出现k次的也一样可以处理。这个题的思路是位运算,但是并没有用到常用的位运算符。主要是位运算的思想在里面。

具体步骤如下:

  • 对于每一个数用位向量表示。
  • 统计所有数字各个位的和。
  • 最后,位向量每一位模k

进行上面的操作之后,剩下的位向量就是出现一次的那个数的位向量表示。还原回来就行。

不过,做的时候有坑。要小心。
下面先贴一段错误代码

代码(错误)

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int bit[32];
        std::memset( bit, 0, sizeof(bit) );

        int sz = nums.size();
        for( int i = 0; i < sz; ++i )
        {
            int idx = 0;
            while( nums[i] ) // 没有考虑负数的D2B
            {
                int mod = nums[i]%2;
                nums[i] /= 2 ;

                bit[idx++] += mod;
            }
        }

        int ret = 0;
        for( int i = 0, base = 1; i < 32; ++i, base *= 2 )
        {
            ret += (bit[i]*base); // 没有考虑负数的B2D
        }
        return ret;

    }
};

上面的代码主要有两处错误,都是没有考虑负数的问题引起的。就是负数D2B和B2D的表示。
D2B:前者是考虑与其位向量表示一致的无符号数,借助无符号数转化为位向量。
B2D:后者是没有考虑最高位的负权。

代码(正确)

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int bit[32];
        std::memset( bit, 0, sizeof(bit) );

        int sz = nums.size();
        for( int i = 0; i < sz; ++i )
        {
            int idx = 0;
            unsigned val = (unsigned)nums[i];// 借助无符号数
            while( val )
            {
                int mod = val%2;
                val >>=1 ;

                bit[idx++] += mod;
            }
        }

        int ret = 0;
        for( int i = 0, base = 1; i < 32; ++i, base *= 2 )
        {
            bit[i] %= 3;
            if(i<31){
                ret += (bit[i]*base);
            }
            else{
                ret += (bit[i]*(-base));// 最高位负权
            }
        }
        return ret;

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值