问题
思路
这个题的思路比较通用,对于出现k次的也一样可以处理。这个题的思路是位运算,但是并没有用到常用的位运算符。主要是位运算的思想在里面。
具体步骤如下:
- 对于每一个数用位向量表示。
- 统计所有数字各个位的和。
- 最后,位向量每一位模k
进行上面的操作之后,剩下的位向量就是出现一次的那个数的位向量表示。还原回来就行。
不过,做的时候有坑。要小心。
下面先贴一段错误代码
代码(错误)
class Solution {
public:
int singleNumber(vector<int>& nums) {
int bit[32];
std::memset( bit, 0, sizeof(bit) );
int sz = nums.size();
for( int i = 0; i < sz; ++i )
{
int idx = 0;
while( nums[i] ) // 没有考虑负数的D2B
{
int mod = nums[i]%2;
nums[i] /= 2 ;
bit[idx++] += mod;
}
}
int ret = 0;
for( int i = 0, base = 1; i < 32; ++i, base *= 2 )
{
ret += (bit[i]*base); // 没有考虑负数的B2D
}
return ret;
}
};
上面的代码主要有两处错误,都是没有考虑负数的问题引起的。就是负数D2B和B2D的表示。
D2B:前者是考虑与其位向量表示一致的无符号数,借助无符号数转化为位向量。
B2D:后者是没有考虑最高位的负权。
代码(正确)
class Solution {
public:
int singleNumber(vector<int>& nums) {
int bit[32];
std::memset( bit, 0, sizeof(bit) );
int sz = nums.size();
for( int i = 0; i < sz; ++i )
{
int idx = 0;
unsigned val = (unsigned)nums[i];// 借助无符号数
while( val )
{
int mod = val%2;
val >>=1 ;
bit[idx++] += mod;
}
}
int ret = 0;
for( int i = 0, base = 1; i < 32; ++i, base *= 2 )
{
bit[i] %= 3;
if(i<31){
ret += (bit[i]*base);
}
else{
ret += (bit[i]*(-base));// 最高位负权
}
}
return ret;
}
};