[LeetCode] Minimum Size Subarray Sum

本文介绍了解决在给定数组中找到和大于指定值的最小子数组长度的问题,包括暴力滑动窗口法和伸缩窗口法两种算法,详细解释了每种方法的时间和空间复杂度。

Minimum Size Subarray Sum

 

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

解题思路:

注意这里的subarray是只顺序不可变,故不可以用先排序后选择的方法。

1、暴力滑动窗口法。依次验证窗口大小为1,2,3...的窗口,看看是否有和大于给定值的子数组。时间复杂度为O(n^2),空间复杂度为1

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int size = nums.size();
        int len = 1;
        while(len<=size){
            int sum = 0;
            for(int j=0; j<len; j++){
                sum += nums[j];
            }
            if(sum>=s){
                return len;
            }
            int start = 0;
            int end = start + len - 1;
            while(end + 1<size){
                sum -= nums[start];
                sum += nums[end+1];
                if(sum>=s){
                    return len;
                }else{
                    start++;
                    end++;
                }
            }
            len++;
        }
        return 0;
    }
};
2、伸缩窗口法。用两个指针start,end,若start和end-1之间的和小于s,end增加,若大于等于s,start增加,然后记录大于等于s时最小的长度。这种办法时间复杂度为O(n),空间复杂度为1。

class Solution {
public:
    int minSubArrayLen(int s, vector<int>& nums) {
        int size = nums.size();
        if(size==0){
            return 0;
        }
        int minLen = size + 1;
        int sum = 0;
        int start=0, end=0;
        while(end<size){
            while(sum<s && end<size){
                sum += nums[end];
                end++;
            }
            while(sum>=s){
                minLen = min(minLen, end - start);
                if(minLen == 1){
                    return minLen;
                }
                sum -= nums[start];
                start++;
            }
        }
        
        return minLen==size + 1?0:minLen;
    }
};


### LeetCode Top 100 Popular Problems LeetCode provides an extensive collection of algorithmic challenges designed to help developers prepare for technical interviews and enhance their problem-solving skills. The platform categorizes these problems based on popularity, difficulty level, and frequency asked during tech interviews. The following list represents a curated selection of the most frequently practiced 100 problems from LeetCode: #### Array & String Manipulation 1. Two Sum[^2] 2. Add Two Numbers (Linked List)[^2] 3. Longest Substring Without Repeating Characters #### Dynamic Programming 4. Climbing Stairs 5. Coin Change 6. House Robber #### Depth-First Search (DFS) / Breadth-First Search (BFS) 7. Binary Tree Level Order Traversal[^3] 8. Surrounded Regions 9. Number of Islands #### Backtracking 10. Combination Sum 11. Subsets 12. Permutations #### Greedy Algorithms 13. Jump Game 14. Gas Station 15. Task Scheduler #### Sliding Window Technique 16. Minimum Size Subarray Sum 17. Longest Repeating Character Replacement #### Bit Manipulation 18. Single Number[^1] 19. Maximum Product of Word Lengths 20. Reverse Bits This list continues up until reaching approximately 100 items covering various categories including but not limited to Trees, Graphs, Sorting, Searching, Math, Design Patterns, etc.. Each category contains multiple representative questions that cover fundamental concepts as well as advanced techniques required by leading technology companies when conducting software engineering candidate assessments. For those interested in improving logical thinking through gaming activities outside traditional study methods, certain types of video games have been shown beneficial effects similar to engaging directly within competitive coding platforms [^4]. --related questions-- 1. How does participating in online coding competitions benefit personal development? 2. What specific advantages do DFS/BFS algorithms offer compared to other traversal strategies? 3. Can you provide examples illustrating how bit manipulation improves performance efficiency? 4. In what ways might regular participation in programming contests influence job interview success rates? 5. Are there any notable differences between solving problems on paper versus implementing solutions programmatically?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值