Trading Terms

原创 2017年07月17日 20:45:57

Reference:
JoinQuant


Total Returns Total Annualized Returns Benchmark Returns Benchmark Annualized Returns
Alpha Beta Sharpe Sortino
Information Ratio Algorithm Volatility Benchmark Volatility Max Drawdown
Downside Risk Winning Ratio Daily Winning Ratio The Profit and Loss Ratio

1. Total Returns

TotalReturns=(PendPstart)/Pstart100%Pend=Account Final AssetsPstart=Account Primary Assets


2. Total Annualized Returns

TotalAnnualizedReturns=Rp=((1+P)250n1)100%P=Total Returnsn=Execution Days


3. Benchmark Returns

Benchmark Returns=(MendMstart)/Mstart100%Mend=Benchmark Final AssetsMstart=Benchmark Primary Assets


4. Benchmark Annualized Returns

Benchmark Annualized Returns=Rm=((1+M)250n1)100%M=Benchmark Returnsn=Execution Days


5. Alpha

Alpha=α=Rp[Rf+βp(RmRf)]Rp=Strategies Annualized ReturnsRm=Benchmark Annualized ReturnsRf=Riskfree Interest Rateβp=Strategies Beta

if α>0, the strategy gains excess returns.
if α=0, the strategy gains general returns.
if α<0, the strategy gains lower than benchmark returns.


6. Beta

Beta=β=Cov(Dp,Dm)Var(Dm)Dp=Strategies Daily ReturnsDm=Benchmark Daily ReturnsCov(Dp,Dm)=The Covariance of Strategies Daily Returns and Benchmark Daily ReturnsVar(Dm)=The Variance of Benchmark Daily Returns

if β>0, the strategy is in opposition direction to the benchmark.
if β=0, the strategy and benchmark are no related.
if 0<β<1, the strategy is in same direction to the benchmark, but smaller range of movement.
if β=1, the strategy is in same direction to the benchmark, and same range of movement.
if β>1, the strategy is in same direction to the benchmark, but bigger range of movement.


7. Sharpe
      How much excess returns will be given by per unit of total risk?

Sharpe Ratio=RpRfσpRp=Strategies Annualized ReturnsRf=Riskfree Interest Rateσp=The Volatility of Strategies Returns


8. Sortino
      How much excess returns will be given by per unit of downside risk?

Sortino Ratio=RpRfσpdRp=Strategies Annualized ReturnsRf=Riskfree Interest Rateσpd=Strategies Downside Volatility


9. Information Ratio
      Measure the excess returns be given by per unit of excess risk.

Information Ratio=IC=RpRmσtRp=Strategies Annualized ReturnsRm=Benchmark Annualized Returnsσt=The Standard Deviation of Difference between Strategies Daily Returns and Benchmark Daily Returns (fetch one years data)


10. Benchmark Volatility

Benchmark Volatility=σm=250ni=1n(rmrm¯)2rm=Benchmark Daily Returnsrm¯=1ni=1nrmn=Execution Days


11. Max Drawdown

Max Drawdown=Max(PxPy)/PxPx,Py=Account Assets on any day,  y>x


12. Downside Risk

Downside Risk=σpd=250ni=1n(rprpi¯)2f(t)rp=Strageties Daily Returnsrpi¯=1ij=1irjn=ExecutionDaysf(t)=1, if   rp<rpi¯f(t)=0, if   rprpi¯


13. The Profit and Loss Ratio

The Profit and Loss Ratio=Total ProfitTotal Loss

版权声明:本文为博主原创文章,未经博主允许不得转载。

DSP、Trading Desk、Exchange、SSP :解读广告生态圈

dsp:DSP是Demand-Side Platform的缩写,即需求方平台,
  • nwpuwyk
  • nwpuwyk
  • 2014年07月24日 14:25
  • 2001

uva - 10700 - Camel trading(贪心)

题意:一个计算式,只有加和乘,在任意地方加括号,输出结果可能的最大和最小。 方法:最大就是先加后乘法,最小就是先乘后加。分别用两个数组保存,最后计算就行。 注:这种输入总是很郁闷,不能用文件,要用回车...
  • u013545222
  • u013545222
  • 2014年02月12日 13:05
  • 737

Elasticsearch Terms Aggregation 详解

Terms Aggregation
  • wangmaohong0717
  • wangmaohong0717
  • 2017年03月06日 15:29
  • 688

Lucene in action 笔记 term vector

Leveraging term vectors所谓term vector, 就是对于documents的某一field,如title,body这种文本类型的, 建立词频的多维向量空间.每一个词就是一维...
  • fxjtoday
  • fxjtoday
  • 2010年01月06日 14:25
  • 9185

冲量(momentum)的原理与Python实现

冲量(momentum)的原理与Python实现 前言 参考:https://www.jianshu.com/p/58b3fe300ecb 梯度下降法(Gradient Descent)...
  • jacke121
  • jacke121
  • 2018年01月09日 22:49
  • 91

ES权威指南_04_aggs_09 Significant Terms(significant_terms )

https://www.elastic.co/guide/en/elasticsearch/guide/current/significant-terms.html
  • slml08
  • slml08
  • 2017年02月07日 09:12
  • 745

执行rpm -Uvh xxxxxx.rpm, 报freely redistributed under the terms of the GNU GPL

安装rpm遇到问题:        执行rpm -Uvh xxxxxx.rpm, 报freely redistributed under the terms of the GNU GPL 解决...
  • wanglf1986
  • wanglf1986
  • 2016年09月29日 11:26
  • 422

uva 11054 Wine trading in Gergovia(贪心)

题目连接:11054 - Wine trading in Gergovia 题目大意:有N户人家住在一条街上,每户人家有需求和供应葡萄酒, 因为路程的不同,导致交易葡萄酒的成本不同,成不等于交易量...
  • u011328934
  • u011328934
  • 2013年08月24日 14:44
  • 955

IIC&nbsp;&nbsp;概述与操作

概述与操作" TITLE="IIC  概述与操作" />  概述与操作" TITLE="IIC  概述与操作" /> 概述与操作" TITLE="IIC  概述与操作" />...
  • u014183377
  • u014183377
  • 2014年11月13日 23:09
  • 273

A Survey of Deep Learning Techniques Applied to Trading

A Survey of Deep Learning Techniques Applied to Trading Deep learning has been getting a lot ...
  • Richard_More
  • Richard_More
  • 2016年08月30日 12:46
  • 3721
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Trading Terms
举报原因:
原因补充:

(最多只允许输入30个字)