学习Factor Anaylsis and Multi-factor analysis的体会

原创 2012年03月30日 22:33:34
Factor Analysis ,不知道在中文里怎么说,知道的同学请告诉我。其实字面意思已经告诉我们它是干什么的了,那就是因素分析,也就是分析一个事情的成因--有哪些因素与这个事情有关,可以影响这个事情。严谨一点来说,它是一种统计分析,是分析统计变量之间的关联性的。对于一组统计变量,他们一起互相影响着发生一些变化,我们很想知道隐藏在这些变化之后的东西是什么。这些隐藏在这些变化后的东西也许能更准确地描述我们需要的信息,而且可能具有比能观察到的变化更低的维数。我们需要这种抽象。Factor Anaylsis就是给我们提供一些方法,来分析这些变量之间的关联以及关联背后的东西的,从而实现这个抽象的过程。更重要的是,Factor Anaylsis还能告诉我们怎么用最少的特征,距离最远的特征来描述这些关联和变化,所以PCA(Principal Component Analysis)是Factor Anaylsis比不可少的一个实现方法。

用例子说明会简单些。有些事物是可以观察的和容易定量描述的,比如学生的考试成绩,高就是高,低就是低,一目了然,想用某科的考试成绩来分析学生很简单。但是学生的资质就是一个很不容易观察和定量描述的东西,其他不容易观察和定量分析的例子还包括人的智力、EQ、人格特質、食物偏好、消費者的購買行為等。對於這些無法明確表示(抽象的)或無法測量的因素,我们可以經由一些可以測量的變數,加以訂定出這些因素,这就是factor analysis的目的和作用。回到衡量学生资质的例子,因为学生资质是个不好定量描述的东西,我们设计十门考试这些可以定量描述的变量,通过factor analysis,找出隐含的,也就是隐藏在考试成绩背后的,维数比十门考试成绩更低的却更能准确说明学生资质的东西(factors)来衡量学生的资质。这就是factor analysis可以帮我们做到的。因为大家都知道考试成绩在反映学生资质问题上各科之间可能有很大冗余,并不是互相独立的。Factor analysis不仅可以帮我们找到可以衡量学生资质的不容易量化测量的东西,还可以保证这些东西是最能说明问题的,最简洁的,各个因素之间没有冗余的。再用比较严谨的话来说就是Factor Anaylsis帮我们找到的这些能说明学生资质的东西维数最低,各维之间相关性最小或者根本不相关(正交)。


可能说了半天也没说明白,不明白的同学请举手呵呵



机器学习:Factor analysis因子分析

这部分内容还是挺奇怪的,学生的时候感觉不难啊,但是把复盘的时候,总是各种难以明说的困惑,不知道是不是因为戒烟,注意力不够专注,总之,学的不是很容易。 说归来因子分析,解决的是维度高,样本不足的情况下...
  • cuihuijun1hao
  • cuihuijun1hao
  • 2017年06月07日 01:58
  • 595

斯坦福大学公开课 :机器学习课程(Andrew Ng)——12、无监督学习:Factor Analysis

1)问题描述 2)协方差矩阵的限制 3)多元高斯分布的边缘分布和条件分布 4)因子分析的例子 5)因子分析模型 6)因子分析的EM估计‘ 7)简单总结 1)问题描述    之前我们考虑...
  • mmc2015
  • mmc2015
  • 2015年01月06日 14:31
  • 1539

【机器学习-斯坦福】学习笔记20——因子分析(Factor Analysis)

1 问题      之前我们考虑的训练数据中样例的个数m都远远大于其特征个数n,这样不管是进行回归、聚类等都没有太大的问题。然而当训练样例个数m太小,甚至m...
  • u012409883
  • u012409883
  • 2013年12月03日 10:17
  • 1970

因子分析(factor analysis)

因子分析 基本思想 公式推导 基于R的实验 结论 基本思想在这一讲当中呢,我们谈一谈,因子分析(factor analysis),在上一节当中,我们说了主成分分析,我们说这两种方法有点相似,初学者往往...
  • hfutxiaoguozhi
  • hfutxiaoguozhi
  • 2017年12月19日 15:32
  • 113

斯坦福大学机器学习——因子分析(Factor analysis)

一、问题的提出 在EM算法求解高斯混合模型一文中,我们的样本集 ,而样本的数量m远大于样本的维度n,因此,可以轻易的构造出高斯混合模型。 现在,我们再看下不同的情况:假如,或,我们将很难构建一个普...
  • linkin1005
  • linkin1005
  • 2014年12月15日 16:11
  • 7453

【Scikit-Learn 中文文档】二十二:双聚类 - 无监督学习 - 用户指南 | ApacheCN

Biclustering 可以使用 sklearn.cluster.bicluster 模块。 Biclustering 算法对数据矩阵的行列同时进行聚类。 同时对行列进行聚类称之为 bicluste...
  • lonsonlee
  • lonsonlee
  • 2017年11月29日 15:19
  • 90

因子分析法(Factor Analysis)是什么分析?

因子分析与因子分析法主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多变量分析中,某些变量间往往存在相关性。是什么原因使变量间有关联呢?是否存在不能直接...
  • caimouse
  • caimouse
  • 2017年03月06日 20:29
  • 1285

factor analysis

http://www.cnblogs.com/jerrylead/archive/2011/05/11/2043317.html
  • sinat_15256063
  • sinat_15256063
  • 2016年03月30日 21:28
  • 177

socket学习小结

最近一直都在练习socket编程,发现网上很多帖子给出的例子都比较简单,不知是我自己理解出问题了还是怎么的,在实践中遇到很多问题,现总结一下自己的体会: 1.首先,socket只是提供一个数据交...
  • zhaiguo42
  • zhaiguo42
  • 2014年11月19日 19:11
  • 233

【机器学习-斯坦福】因子分析(Factor Analysis)

1 问题      之前我们考虑的训练数据中样例的个数m都远远大于其特征个数n,这样不管是进行回归、聚类等都没有太大的问题。然而当训练样例个数m太小,甚至m...
  • littleqqqqq
  • littleqqqqq
  • 2016年03月15日 20:34
  • 2703
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:学习Factor Anaylsis and Multi-factor analysis的体会
举报原因:
原因补充:

(最多只允许输入30个字)