[Leetcode]-Basic Dynamic Programming(1)

Approach For Dynamic progaming

Basic Concept

动态规划算法通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。
与分治法不同的是,通常将待求解的问题分解为互相影响的若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

Key Point

采用动态规划算法最关键的点在于,找到状态转移方程,将一个子问题分解,然后子问题最优解也是当前问题最优解的一部分。要通过归纳总结的方法找到子问题之间的关联节点,然后实现转换。

Application

Problem1

Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Ex1
Input: [7, 1, 5, 3, 6, 4]
Output: 5

max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)
EX2
Input: [7, 6, 4, 3, 1]
Output: 0

In this case, no transaction is done, i.e. max profit = 0.

Ananlysis

状态方程为,
设T[i]是第i天之后的价格中最大的数,
T[i]=min { prices[i],T[i+1] }
然后用T[i]减去当前的价格,如果比当前的最大价差还要大,就更新最大价差,否则不变。

复杂度分析

空间复杂度: O(n)
时间复杂度: O(n)

code


class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if (n == 0) return 0;
        if (n == 1) return 0;
        int* T = new int[n];
        T[n-1] = prices[n-1];
        int max = 0;
        for (int i = n - 2; i >= 0; i--) {
            if (T[i+1] > prices[i]) {
                if (max < (T[i+1]-prices[i])) {
                    max = T[i+1]-prices[i];
                }
                T[i] = T[i+1];
            } else {
                T[i] = prices[i];
            }
        }
        delete []T;

        return max;
    }
};

problem2

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

具体请见Leetcode

Anaysis

这是一道个人感觉还是蛮复杂的题,首先要分析清楚,它能完成三种操作,每一个对于前面一个来说有插入,删除,和替换。对于当前的状态,记为E(i,j),它可以由前面三个子问题得来。状态方程可写为:
E(i,j)=min { E(i1,j)+1,E(i,j1)+1,E(i1,j1)+diff(i1,j1) }
其中 E(i1,j)+1 表示删除一个字母, E(i,j1)+1 添加一个字母, E(i1,j1)+diff(i1,j1) 表示不相同则替换,然后 E(i,j) 为三者中的操作最少值。
根据状态方程,可以写出代码:

code

#include <iostream>
#include <string> 
#include <assert.h>
using namespace std;
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size() + 1;
        int n = word2.size() + 1;
        int** matrix = new int*[m];
        for (int i = 0; i < m; i++) {
            matrix[i] = new int[n];
        }
        for (int i = 0; i < m; i++) {
            matrix[i][0] = i;
        }
        for (int j = 1; j < n; j++) {
            matrix[0][j] = j;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                int diff = 0;
                if (word1[i - 1] != word2[j - 1]) diff = 1;
                matrix[i][j] = GetMin(matrix[i - 1][j] + 1, matrix[i][j - 1] + 1, matrix[i - 1][j - 1] + diff);
            }
        }
        int result = matrix[m - 1][n - 1];
        for (int i = 0; i < m; i++) {
            delete[]matrix[i];
        }
        delete[]matrix;
        return result;
    }

    int GetMin(int a, int b, int c) {
        int min = a;

        if (min > b) min = b;
        if (min > c) min = c;
        return min;
    }
};

复杂度分析

时间复杂度: O(mn) (遍历了一个 m×n 的二维数组)
空间复杂度: O(mn) (new了一个 m×n 的二维数组)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值