动态规划——矩阵连乘问题

矩阵连乘问题,一个很经典的DP问题。

用DP解这道题的时候,需要找到递归方程,也就是下面这条


其中m[i][j]代表的是矩阵Mi....Mj之间的乘法的最小次数.根据这个来写代码,就清晰多了。

/*
问题描述:计算n个矩阵连乘所需的最少乘法次数
*/

#include <iostream>
#include <string>
using namespace std;

int Matrix_chain_Multiply(int p[],int n,int m[][8],int s[][8])
{
	//这里的n是数组p[]的元素个数,比矩阵个数多了一个
	n-=1;
	int i,j,r,k,q;

	for(i=1;i<=n;i++)
		m[i][i]=0;  //单个矩阵相乘次数为0

	for(r=2;r<=n;r++)   //r为连乘矩阵的个数
	{
		for(i=1;i<=n-r+1;i++)   //i就是连续r个矩阵的第一个
		{
			j=i+r-1;  //j就是连续r个矩阵的最后一个
			m[i][j]=99999999;
			for(k=i;k<j;k++)   //求m[i][j],m[i][j]就是Ai...Aj这 j-i+1 个矩阵连乘需要的最少的乘法次数
			{
				q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
				if(q<m[i][j])
				{
					m[i][j]=q;
					s[i][j]=k;   //在k处分开是最好的
				}
			}
		}
	}
	return m[1][n];   //n个矩阵连乘的最少相乘次数
}

void Print_Matrix_Chain(string A[],int s[][8],int i,int j)
{
	//输出最优解
	if(i == j)
		cout<<A[i-1]<<" ";
	else
	{
		cout<<"( ";
		Print_Matrix_Chain(A,s,i,s[i][j]);
		Print_Matrix_Chain(A,s,s[i][j]+1,j);
		cout<<") ";
	}
}

int main()
{
	int p[7]={30,35,15,5,10,20,25};
	int m[8][8],s[8][8];
	int min=Matrix_chain_Multiply(p,7,m,s);
	cout<<"上述6个矩阵连乘,最少需要做 "<<min<<" 次乘法运算"<<endl;
	string A[6]={"A1","A2","A3","A4","A5","A6"};
	cout<<"最优的全加括号形式为:";
	Print_Matrix_Chain(A,s,1,6);
	cout<<endl;
	return 0;
}


其中p[]是保存矩阵链的row和col的

运行结果:

上述6个矩阵连乘,最少需要做 15125 次乘法运算
最优的全加括号形式为:( ( A1 ( A2 A3 ) ) ( ( A4 A5 ) A6 ) )
Press any key to continue


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值